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Abstract 

Membrane characterization provides essential information for the scale-up, design, and 

optimization of new separation systems. We recently proposed the diafiltration apparatus 

for high-throughput analysis (DATA), which enables a 5-times reduction in the time, 

energy, and the number of experiments necessary to characterize membrane transport 

properties. This paper applies formal model-based design of experiments (MBDoE) 

techniques to further analyse and optimize DATA. For example, the eigenvalues and 

eigenvectors of the Fisher Information Matrix (FIM) show dynamic diafiltration 

experiments improve parameter identifiability by 3 orders of magnitude compared to 

traditional filtration experiments. Moreover, continuous retentate conductivity 

measurements in DATA improve A-, D-, E-, and ME-optimal MBDoE criteria by 

between 6 % and 32 %. Using these criteria, we identify pressure and initial 

concentrations conditions that maximize parameter precision and remove correlations. 
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1. Introduction 

Membrane processes have shown promise for addressing the critical needs for 

sustainability and energy efficiency. Recent material design to achieve separations of 

similar-sized molecules has evolved in the directions of precisely controlling the 

nanostructure of membranes and identifying chemical functionalities which accentuate 

desired transport properties (Hoffman and Phillip, 2020; Sadeghi et al., 2018). A detailed 

understanding of the underlying thermodynamic and transport phenomena can elucidate 

the molecular interactions and mechanisms that affect the macroscopic transport 

properties of the membrane (Geise et al., 2014; Yaroshchuk et al., 2018). Motivated by 

this need, the development of membrane characterization techniques that explore the 

dependency of membrane performance on feed conditions can greatly accelerate the 

development of materials (Ghosh et al., 2000). In addition, membrane characterization 

that elucidates underlying mechanisms provides essential information for scale-up, 

design, and optimization, facilitating the development of separations.  

Design of Experiments (DoE) methods optimize computational and physical experiments 

to maximize the information gain and to minimize time and resource costs. Classical 

‘black-box’ (a.k.a. factorial, response surface) DoE approaches, which decide the best 

design by the input-output relationship, does not (directly) incorporate membrane science 

knowledge; in contrast, model-based DoE (MBDoE) leverages high-fidelity models 
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constructed from underlying physical principles that describe the experimental system 

(Franceschini and Macchietto, 2008). The information collected from experiments can be 

applied to discriminate between scientific hypotheses, posed as mathematical models, and 

to improve the precision of parameter estimation. However, to date, MBDoE has not been 

applied to membrane characterization techniques. 

Guided by data analytics, Ouimet et al. (2021) developed a diafiltration apparatus for 

high-throughput analysis (DATA) to address the limitations of current membrane 

characterization methods, e.g., time-consuming experimental campaigns and parameter 

non-identifiability. In this paper, we use MBDOE and FIM-based analysis to 

mathematically quantify the improvements reported by Ouimet et al. (2021) and further 

refine the experimental conditions needed in DATA to characterize membrane transport 

properties and discriminate between possible transport mechanisms.  

2. Mathematical model, materials, and methods 

In the dynamic diafiltration experiments described by Ouimet et al. (2021), a concentrated 

diafiltrate is continuously injected into a stirred cell under applied pressure, permeate is 

collected in several scintillation vials with the mass of the sample vial, 𝑚𝑣 , permeate 

concentration, 𝑐𝑣, and retentate concentration in the stirred cell, 𝑐𝑓, measured. Using these 

measurements, three model parameters - hydraulic permeability, 𝐿𝑝 , the solute 

permeability coefficient, 𝐵 that correspond to the membrane transport properties, and the 

reflection coefficient, 𝜎, that depends on the thermodynamics of the membrane-solution 

interface - are estimated via weighted least-square nonlinear regression (Eq. (1) where 

𝜽 = {𝐿𝑝, 𝐵, 𝜎}). These parameters are related to the volumetric flux of water, 𝐽𝑤, and the 

molar flux of the solute, 𝐽𝑠, across the membrane in Eq. (2).  
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(1) 

𝐽𝑤 = 𝐿𝑝(∆𝑃 − 𝜎∆𝜋),   𝐽𝑠 = 𝐵∆𝑐 (2) 

The diafiltration apparatus, the differential-algebraic equations (DAEs) model, the data, 

and the regressed parameters values, i.e., 𝐿𝑝 = 3.90 L∙m-2∙h-1∙bar-1, 𝐵 = 0.29 μm∙s-1 and 

𝜎 = 1 are described by Ouimet et al. (2021). Three key design decisions, the diafiltrate 

concentration, 𝑐𝑑, the initial feed concentration, 𝑐𝑓(0), and the applied pressure, ∆𝑃 may 

be optimized to maximize the precision of the estimated parameters from dynamic 

diafiltration experiments. 

3. Fisher Information Matrix (FIM) 

The Fisher Information Matrix (FIM), 𝐌 , measures the information content of 

measurements and is defined as the inverse of the posterior covariance matrix 𝐕, Eq. (4), 

ignoring the prior information (Franceschini and Macchietto, 2008). Here, 𝑣𝑚,𝑟𝑠 is the 

𝑟𝑠th element of the 𝑁𝑦 × 𝑁𝑦 inverse matrix of measurements error.  𝐉𝑟 is the sensitivity 

matrix of output 𝑦𝑟 sampled at times 𝑡𝑠 and evaluated at nominal parameters values �̂� and 

specified experimental design conditions 𝝓. 
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MBDoE techniques increases parameter precision by minimising a metric of 𝐕  or 

equivalently maximizing a metric of 𝐌 . A-, D-, E-optimal experimental designs 

correspond to minimising the trace, the determinant, and the maximum eigenvalue of 𝐕, 

respectively (or maximizing the trace, the determinant, and the maximum eigenvalue of 

𝐌). The determinant and trace of the covariance matrix 𝐕  can be interpreted as the 

volume of the covariance ellipsoid under feasible experimental conditions, while the 

maximum eigenvalue represents the size of the major axis, minimizing them reduces 

model parameter uncertainty. Additionally, the modified E-optimal (ME-) criterion 

minimizing the condition number of 𝐌 which is defined as the ratio of the largest to the 

smallest eigenvalues, removes the correlation of parameters. 

4. Results and discussions 

4.1. Diafiltration experiment enables identification of all model parameters 

Table 1 compares the FIMs and their eigen decompositions for experiments in both 

filtration (F) and diafiltration (D) modes as reported by Ouimet et al. (2021). The analysis 

of each mode considers one experiment with continuous data collection from the inline 

conductivity probe (M1) and one experiment encompassing only the initial and final 

retentate measurements (M2). The elements of the FIMs are one order of magnitude larger 

for diafiltration (D) than filtration (F) experiments. This shows diafiltration experiments 

contains more useful information to infer the model parameters. Moreover, analysing the 

eigenvalues and eigenvectors indicates which parameter can be precisely estimated 

through experimental design. For example, the minimum eigenvalue of filtration (F) M1 

is 4.93E+05; the corresponding eigenvector is predominantly in the direction of model 

parameter 𝜎. Under the same mode, the largest eigenvalue, 4.71E+09, corresponds the 

eigenvector in the direction of 𝐿𝑝. This difference, 4 orders of magnitude, indicates that 

a filtration experiment alone is unable to precisely estimate 𝜎. In contrast, for diafiltration 

(D) mode, the eigenvalues whose corresponding eigenvectors in the direction of 𝜎 , 

8.53E+10 in M1 and 8.18E+10 in M2, become the largest ones. Moreover, the smallest 

eigenvalues for diafiltration mode are 2.17E+08 (M1) and 1.96E+08 (M2), which are 3 

orders of magnitude larger than the smallest eigenvalues for filtration mode. This 

difference indicates that diafiltration experiments are better suited to precisely estimate 

all three model parameters. Both findings are consistent with the sensitivity analysis 

results from Ouimet et al. (2021). 

4.2. Additional retentate measurements improve parameter precision 

Ouimet et al. (2021) show that measuring the retentate concentration is necessary to 

identify a converging set of parameters. We now use MBDoE to quantify the information 

content of the additional measurements. Recall M1 in Table 1 considers inline 

conductivity probe measurements for the retentate whereas M2 omits these measurements 
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and only considers initial and final retentate measurements. Table 1 shows elements and 

eigenvalues of FIMs of M1 are always larger than M2, which shows the additional data 

increases the precision of the estimated parameters for both modes. Furthermore, for 

diafiltration, Table 2 shows 6 % and 32 % reduction in terms of the volume of the 

confidence ellipsoid from A-, D-optimal criteria, respectively, 11 % reduction in terms of 

the uncertainty of the least confident parameter (𝐵) from E-optimal, and 6% improvement 

in the ME-optimal criterion which measures parameter correlation. Similarly, Table 2 

also shows 8 %, 17 %, and 2 % improvements from A-, D-, E-optimal criteria, 

respectively, in filtration experiments. However, the 6 % worsening of the ME-optimal 

criterion, indicates collecting additional data in filtration mode increases the correlation 

of the estimated parameters.  

Table 1. FIM, eigenvalues and eigenvectors of FIM are calculated in both filtration (F) mode and 

diafiltration (D) mode. Model M1 includes inline conductivity probe measurements while models 

M2 includes only the initial and final retentate measurements. 

Mode Model 
FIM (×1e9) 

Eigenvalues 
Eigenvectors 

𝐿𝑝 𝐵 𝜎 𝐿𝑝 𝐵 𝜎 

F 

M1 

4.67 -0.01 -0.40 4.93E+05 -8.57E-02 -8.50E-03 -9.96E-01 

-0.01 0.02 0.00 1.74E+07 1.80E-03 1.00E+00 -8.70E-03 

-0.40 0.00 0.04 4.71E+09 -9.96E-01 2.60E-03 8.57E-02 

M2 

4.34 0.01 -0.37 4.85E+05 8.60E-02 3.30E-03 9.96E-01 

0.01 0.02 0.00 1.63E+07 2.00E-03 -1.00E+00 3.20E-03 

-0.37 0.00 0.03 4.37E+09 -9.96E-01 -1.70E-03 8.60E-02 

D 

M1 

20.85 3.09 -20.62 2.17E+08 -1.46E-01 -9.47E-01 -2.88E-01 

3.09 5.56 -19.14 1.45E+10 9.41E-01 -2.23E-01 2.56E-01 

-20.62 -19.14 73.61 8.53E+10 -3.07E-01 -2.33E-01 9.23E-01 

M2 

17.78 3.00 -18.36 1.96E+08 -1.41E-01 -9.47E-01 -2.89E-01 

3.00 5.57 -19.03 1.27E+10 9.50E-01 -2.11E-01 2.29E-01 

-18.36 -19.03 71.38 8.18E+10 -2.78E-01 -2.43E-01 9.29E-01 

Table 2. DoE optimality criteria for models M1 and improvement of using M1 instead of M2. 

Mode Model 

Functions of FIM 

A-optimal D-optimal E-optimal ME-optimal 

Trace Determinant Minimal eigenvalue Condition number 

F 

M1 
Improvement 

4.73E+09 
8%↑ 

4.04E+22 
17%↑ 

4.93E+05 
2%↑ 

9551 
6%↑  

 

M2 4.38E+09 3.45E+22 4.85E+05 9002 

 

 

 

D 

M1 

Improvement 

1.00E+11 

6%↑ 

2.69E+29 

32%↑ 

2.17E+08 

11%↑ 

393 

6%↓ 

 

 

 

M2 9.47E+10 2.03E+29 1.96E+08 418 
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Fig. 1. A-, D-, E-, ME-optimal criteria evaluated under varying experimental conditions. Panel A 

shows filtration experiment (with 8 vials collected) predictions for varying initial feed 

concentration and applied pressure. Panels B, C, D examine the diafiltration experiment with 1, 5 

and 10 vials collected, respectively, for the diafiltrate concentration and applied pressure. 

4.3. MBDoE optimizes DATA system  

We now use A-, D-, E-, and ME-optimality criteria to inform the applied pressure, initial 

retentate or diafiltrate concentrations (experimental design decisions) necessary to 

identify all parameters in filtration and diafiltration. Fig. 2A. examines filtration 

experiment at varying initial feed concentration 𝑐𝑓(𝑡 = 0) and applied pressure ∆𝑃 with 

8 vials collected. Fig. 2B, 2C, and 2D examine diafiltration experiments at varying 

diafiltrate concentration 𝑐𝑑 with 1, 5, and 10 vial collected, respectively. The gray regions 

correspond to physically impossible operating conditions where the water flux is equal to 

or less than zero. The contour lines show the log10-transformed values of every criterion. 

Comparing Fig. 2C to 2A, the lighter color and larger contour values for A-, D-, E-

optimality metrics indicates that the diafiltration experiments with 5 vial collections 



6  X. Liu et al. 

contains more information than the filtration experiment with 8 vial collections. 

Moreover, higher applied pressures maximize A-, D-, and E-optimal metrics. However, 

based on ME-optimality, low applied pressure is desired in diafiltration experiment with 

5 or fewer vial collections to remove the correlation among parameters. Increasing to 10 

vial collections in diafiltration, shown in Fig. 2D, resolves the trade-off between 

parameter precision (A and D) and removing correlations (ME). Thus, with 10 vial 

collections, diafiltration experiments with a feed concentration of 5 mM KCl should be 

performed with a diafiltrate concentration greater than 50 mM KCl and an applied 

pressure at least 45 psi to identify all parameters with an order of magnitude of 

improvement in precision over filtration experiments. 

5. Conclusions 

In this paper, we apply MBDoE analyses to quantify the information gain in a recently 

proposed diafiltration apparatus for high-throughput analysis (DATA) for membrane 

characterization. In the future, MBDoE can be used to discriminate possible phenomena 

and mechanisms within complex multi-component systems and optimize diafiltration 

experiments with more degrees of freedom (e.g., time-varying applied pressure). 
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