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Abstract 
In this work surrogate assisted optimization is utilized to calibrate predictive molecular 
models, called force fields, used in molecular simulations to reproduce the liquid density 
of a hydrofluorocarbon refrigerant molecule. A previous calibration workflow which 
relied on Gaussian process regression models and large Latin hypercube samples to 
screen force field parameter space is extended to include Bayesian optimization methods 
to efficiently guide the search for force field parameters. In comparison to the previous 
work, the Bayesian-based calibration workflow finds a parameter set which results in a 
lower objective function value than the original workflow after evaluating approximately 
50% fewer parameter sets. It is envisioned that this updated workflow will facilitate rapid 
force field optimization enabling screening of vast molecular design space. 
  
Keywords: Bayesian optimization, Gaussian process regression, Molecular simulation 

1. Introduction 
Molecular simulation is a powerful tool for studying the thermodynamic and dynamic 
properties of materials. For example, molecular simulation shows great promise for 
screening vast molecular design spaces which could be expensive or infeasible to probe 
experimentally. However, to utilize molecular simulation in this capacity requires 
accurate predictive molecular models, called force fields. Force fields use a functional 
form and parameters to describe the potential energy of a system and are utilized in 
classical molecular simulations to model intra- and intermolecular interactions. 
Developing generalized, or transferable, force fields to describe large swaths of chemical 
space has historically been a laborious endeavour, often taking months to years to 
complete. Though these off-the-shelf force fields offer accurate predictions for some 
systems, they inevitably lack accuracy across the extraordinary range of molecules found 
in the natural and synthetic world. Further optimization of force field parameters is often 
necessary to ensure the model has the required accuracy for the molecules and properties 
of interest (Wang and Kollman, 2001). Thus, force field optimization represents a 
bottleneck to applying molecular simulation to new systems. 
 
Emerging computational frameworks promise to greatly accelerate the calibration of 
highly accurate, physics-based force fields from experimental data. Efforts to calibrate 
force fields encompass gradient-based, stochastic search, analytical, and ad hoc 
optimization approaches (Befort et al., 2021). Often, a barrier to efficiently calibrating 
force fields is the expense of calculating the objective function, which quantifies the 
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difference between the simulation prediction and experimental value of a property of 
interest. The time requirement of simulations, ranging from minutes-to-hours (e.g., liquid 
density calculations) to days-to-weeks (e.g., vapor-liquid equilibrium), often makes the 
objective function calculation cost prohibitive. This cost only increases as more 
objectives, state points (e.g., temperatures, pressures), and parameters are incorporated in 
the optimization procedure. Recently, machine learning (ML) methods have been 
harnessed to address this challenge by mapping microscopic coordinates to a microscopic 
potential. This functionality enables ML force fields (Unke et al., 2021), but their black 
box nature often prevents physical insights that can be gained from a physics-based 
functional form and parameters of a traditional force field. 
  
ML techniques also facilitate surrogate-assisted optimization. Recently, we developed 
Gaussian process regression (GPR) and support vector machine models to emulate 
molecular simulations to calibrate force fields (Befort et al., 2021), hereafter referred to 
as the JCIM workflow. Our surrogate-assisted optimization JCIM workflow successfully 
screened millions of potential parameter sets, generated through iterative batches of space 
filling Latin hypercube sampling (LHS). Compared to a force field calibrated via hand-
tuning, our workflow enabled the screening of 𝒪(10%) times more parameter sets while 
requiring five times fewer simulations. However, this semi-automated workflow required 
generating large parameter set samples each iteration as well as user input to select which 
parameter sets to consider in the next iteration (i.e., batch of molecular simulations).  
 
In this work, we explore automating our ML-enabled force field calibration framework 
by leveraging Bayesian optimization (BO) (Wang and Dowling, 2022) to intelligently 
propose new parameter sets. Instead of relying on large 𝒪(10' − 10)) LHS batches of 
parameter sets and user-driven decisions to screen parameter space, BO automatically 
balances the search for optimal parameter sets between regions which improve the 
molecular simulation agreement with experimental data (exploitation) and regions which, 
if sampled, will reduce the uncertainty of the ML model (exploration). As a demonstration 
case, we optimize force field parameters for a hydrofluorocarbon (HFC) refrigerant 
molecule, difluoromethane (HFC-32). HFCs are a motivating application because they 
are subject to recent mandates which require the phaseout of high global warming 
potential (GWP) materials. Molecular simulation can aid in the sustainable 
implementation of this phaseout, but this is contingent upon highly accurate force field 
models for HFCs. Here, we consider optimization of a force field for HFC-32 which is 
widely used in many refrigerants and will play a significant role in the transition to next-
generation refrigerants due to its low GWP relative to other commonly used HFCs. 

2. Methods 
2.1. Force Field Model 
This work calibrates a classical molecular mechanics force field for HFC-32 with the 
functional form:  
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Here, 𝑈 is the potential energy and 𝒓 is the vector of position coordinates within the 
configuration space. The first three terms in this equation represent intramolecular 
interactions and the fourth term represents Coulombic intermolecular interactions. The 
parameters in these terms are not calibrated and are reported in Befort et al. (2021). The 
final term of this force field functional form contains 𝜎MN and 𝜀MN  which parameterize the 
Lennard-Jones potential describing the van der Waals repulsion-dispersion 
intermolecular interactions between atoms 𝑖 and 𝑗. Here, we focus on rapidly generating 
an accurate force field, i.e., improving 𝑈(𝒓), for HFC-32, by calibrating the like-
interaction Lennard-Jones parameters, 𝜎MM and 𝜀MM, to reproduce experimental HFC-32 
liquid density. These parameters are calibrated for the three atom types (C, F, and H) of 
HFC-32, resulting in six total fitting parameters. A description of the model, parameters, 
and general system setup can be found in Befort et al. (2021).  System changes in this 
work include: first, performing simulations using the LAMMPS molecular dynamics 
package and, second, expanding the parameter bounds as follows (𝜎 in Å, 𝜀 in kcal/mol): 
3.0 ≤ 𝜎` ≤ 4.0, 2.5 ≤ 𝜎c ≤ 3.5, 1.7 ≤ 𝜎e ≤ 2.7, 0.06 ≤ 𝜀` ≤ 0.16, 0.04 ≤ 𝜀c ≤ 0.14, 
0.0 ≤ 𝜀e ≤ 0.05. While this paper only focuses on optimizing the intermolecular 
Lennard-Jones parameters, which are the least accurate when force fields are traditionally 
parameterized using quantum calculations, we emphasize the proposed BO calibration 
workflow is applicable to any parameters in the force field.   

2.2. Bayesian Optimization Workflow 
The goal of this work is to refine 𝑈(𝒓)	by optimizing force field parameters, ζ, such that 
the objective function, 𝑓(ζ), is minimized. For this case study, ζ = (σk, σm, σn, εk, εm, εn). 
Figure 1 shows the BO-enabled force field calibration workflow. First, ten initial 
parameter sets are generated via LHS. In step one, molecular simulations compute the 
liquid density, 𝐲qMr, of HFC-32 from	𝑈(𝒓)	at multiple state points of interest. Depending 
upon the quality of 𝑈(𝒓), 𝐲7Is may or may not be close to the experimental values, 𝐲tuv, 
and this discrepancy is quantified as the mean squared error objective function, 𝑓(ζ) =
∑ x𝑦MqMr(ζ) − 𝑦M
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2
, where 𝑛 is the number of state points considered. After the initial 

molecular simulations, for each parameter set, 𝐲qMr and the subsequent objective function 
𝑓(𝜁) are computed from the simulation output. At some state points the parameters used 
in the simulation are so poor that the vapor, not liquid, density of HFC-32 is the simulation 
result, leading to a discontinuity in objective function value that may be difficult for a 
surrogate model to capture. To prevent this discontinuity, if a simulation outputs a density 

 
Figure 1: Overview of the proposed BO-enabled force field calibration workflow. 
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lower than the critical density of HFC-32, the simulation density is reported as the critical 
density. This formulation results in a sufficiently poor objective function value, indicating 
a poor parameter set, while preventing a discontinuity. In step two, a GPR model is trained 
to predict 𝑓(𝜁) as a function of calibrated parameters 𝜁 (Befort et al., 2021). In step three 
a BO acquisition function is optimized to determine the next parameter set to evaluate. 
Here, the expected improvement (EI) acquisition function is used to select the next 
optimal parameter set for simulation (Wang and Dowling, 2022). Upon applying the EI 
acquisition function, a new parameter set is generated which is used in new simulations, 
and the workflow continues iteratively until the desired simulation accuracy is reached or 
no improvement can be achieved in the objective function. 

3. Results 
We begin by comparing our automated BO workflow to our prior semi-automated JCIM 
workflow. Figure 2 plots the best (lowest) objective function value found after simulating 
110 trial parameter sets (i.e., initial ten LHS parameter sets plus one hundred EI-generated 
samples) in the BO workflow compared to the best objective function values found after 
evaluating 200, 400, 600, and 800 total parameter sets in the JCIM workflow. Figure 2 
shows the improvement in objective function value for both workflows as more parameter 
sets are evaluated and the surrogate models are trained on more data. After 101 parameter 
sets are evaluated in the BO-based workflow, the objective function is 1.20 x 10-4 g2/cm6 

while the lowest objective function for the JCIM workflow’s initial 200 parameter sets, 
which were generated via LHS, was 1.24 x 10-4 g2/cm6. This indicates that the BO 
workflow can achieve a lower objective function value after evaluating approximately 
50% fewer parameter sets, and therefore performing less simulations, than a space filling 
sample of parameter space. We hypothesize this is the result of the adaptive nature of BO 
acquisition function, which can effectively explore and exploit parameter space to more 
efficiently find optimal parameter sets. We expect that as more simulations are performed, 
the GPR models in the BO workflow will improve such that this workflow will 
additionally require fewer simulations to surpass the objective function values found after 
evaluating 400, 600, and 800 samples in the JCIM workflow. 
 
GPR model improvement for the BO workflow is seen in Figure 3, which shows the 
absolute error between the GPR model prediction of the objective and the actual 

 
Figure 2: Comparison of the best objective function value after evaluating a certain number of 
parameter sets using the proposed BO workflow (black x, black line) versus our prior JCIM 

workflow (colored markers, dashed lines). 
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simulation result for each trial parameter set. The standard deviation in the GPR model 
prediction is plotted and shows a decreasing trend. The discrepancy between the GPR 
model prediction and actual simulation result also shows a decreasing, although less 
obvious, trend. This indicates GPR model improvement as more training data and regions 
of parameter space are sampled via the guidance of BO. Figure 4 compares the GPR 
model predictions and the actual simulation results of the objective for each evaluated 
parameter set, with the GPR model uncertainty plotted as error bars. This figure provides 
an example of how the BO-based workflow balances exploration and exploitation, 
showing how GPR model predictions for certain trial parameter sets result in objectives 
very close to simulation results (exploitation) while other predictions are significantly 
different than simulations and have high uncertainty, indicating exploration. Thus, instead 
of relying on GPR models to generate batches of new trial parameter sets in the original 
workflow, the BO-based workflow systematically samples parameter sets to gain 
information about the parameter regions which result in the lowest objective function 
values. We believe this approach both reduces the burden of the user by automatically 
selecting new parameter sets to sample and improves the efficiency of the workflow by 
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decreasing the number of parameter set samples and subsequent simulations required to 
calibrate force fields. 
 
Further analysis is required to benchmark the BO-based calibration workflow. The BO 
results shown in Figure 2 were generated using the gradient based L-BFGS (scipy) 
optimizer to calibrate the GPR model hyperparameters for the first 80 iterations. Then, 
the hyperparameter optimization failed due to a Cholesky factorization error (the GP 
kernel became negative semi-definite) and was switched to an ADAM (BOTorch) 
optimizer. Reproducing this result using only the BOTorch optimizer is a work in 
progress; with only the BOTorch optimizer, the GPR model error remains 𝒪(10~2) 
whereas the JCIM workflow was 𝒪(10~�) after 200 samples. Ongoing work is 
investigating the differences in trained GP hyperparameters and overall BO performance 
using these two optimizers. Additional opportunities for further improving this 
framework include determining the minimum amount of data and initial parameter set 
samples necessary for efficient GPR model improvement, exploring various formulations 
for the objective function, kernel function, and the vapor-liquid density discontinuity, and 

 
Figure 3: Absolute error between GPR model and simulation (green x) and GPR prediction 

uncertainty (black •) change as more parameter sets are evaluated. 

 
Figure 4: Comparison of GPR model prediction mean (red •) and standard deviation (red | , error 

bar) versus molecular simulation results (blue x) as more parameter sets are evaluated. 
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evaluating the capabilities of various GPR model optimizers. We expect these analyses 
to improve the overall efficiency of the BO calibration workflow.  

4. Conclusions 
In this paper, we prototype a fully automated BO framework for force field calibration. 
Results show that after evaluating 101 parameter set samples with the BO workflow, the 
lowest mean squared error between simulation and experimental values for the liquid 
density of HFC-32 is 1.20 x 10-4 g2/cm6. This objective was 0.04 x 10-4 g2/cm6 smaller 
than the best objective found in the initial 200 parameter set LHS used in our prior JCIM 
workflow. This result suggests the BO techniques enhance the efficiency of force field 
calibration. Additionally, BO has enabled automated sampling of parameter space 
removing the need for user decisions for generating trial parameter sets. We expect that 
as more parameter sets are sampled, improvement within the GPR models will continue 
to show that fewer simulations will yield equally accurate force fields as the original 
workflow. Ultimately, this framework can be used to develop accurate force fields for 
multiple HFCs and other classes of molecules for which accurate molecular models are 
lacking. 
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