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Abstract 
Engineered solid-state thermoelectric materials can significantly improve energy 
efficiency and reduce emissions in modern industry by converting waste heat into 
electricity. However, the performance of many state-of-the-art thermoelectric materials 
remains inadequate for adoption beyond niche applications. Current efforts to optimize 
flash sintering, an important step in additive manufacturing of thermoelectric devices, 
rely on intuition-driven Edisonian search which can be extremely time-consuming. The 
alternative way is using Bayesian optimization framework that leverages a probabilistic 
surrogate model to emulate an expensive objective function and an acquisition function 
to recommend future experiments that optimally balance exploitation and exploration.  
 
In this paper, we develop a Gaussian Process Regression (GPR) for the surrogate model 
of the flash sintering of an n-type thermoelectric material, AgSe. It is part of a larger 
effort to leverage machine learning to optimize the entire additive manufacturing 
process. We explore whether different hyperparameters tuning methods are 
consequential for flash sintering datasets and perform retrospective analysis to prove the 
predictivity of GPR. Finally, we discuss the challenges and opportunities for applying 
BO for well-tuned GPR to manufacture high-performance solid-state thermoelectric 
devices. 
 
Keywords: Additive Manufacturing; Data Analysis; Bayesian Optimization; Machine 
Learning  

1. Introduction 
1.1. Background 

Discover functional material with desired properties is one of the key missions in the 
material science community, yet the process remains slow and expensive. For example, 
the discovery of drug-like molecules is facing approximately 10!" possibilities, while 
the synthesized ones are only 10#. Computer-aided molecular design (CAMD) is 
frequently used to design new functional material, however, the success of that is 
limited by the accuracy of the description physical assumptions. In recent years, the 
surge of applying supervised machine learning to leverage data to overcome these 
challenges has demonstrated great promise for predicting physical properties and is 
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expected to revolutionize the design of functional materials, which is widely applied in 
chemical products, materials, and additive manufacturing. Gaussian process regression 
(GPR) is the most popular machine learning model for predicting material property and 
is usually applied with Bayesian optimization to accelerate the design of new functional 
material. It’s a non-parametric model that easily fits any dataset with relative lack of 
prior knowledge and the conjugacy property makes it cost less computation time when 
comparing with CAMD. Numerous studies have proved the effectiveness of putting 
GPR under the Bayesian optimization framework boosting the performance of 
functional materials. 
 
In this paper, we apply GPR to accelerate the development of the TE device. With the 
urgent demand for wearable electronic devices in daily life, developing high-
performance thermoelectric (TE) materials has attracted much attention that fabricating 
TE devices to convert heat generated by the human body into energy for the electrical 
device. The physical performance of TE material is evaluated by a dimensionless figure 
of merit, ZT	 = $2%&

'
 where σ, S, κ, and 𝑇 are the electrical conductivity, Seebeck 

coefficient, thermal conductivity of the material, and absolute temperature, respectively. 
However, it's relatively difficult to measure the thermal conductivity 𝜅. For 
convenience, experimentalists usually set power factor (S2σ), the numerator of ZT, as 
the evaluation metric. 

2. Method 
2.1. Decision Variables, Target and Data Pre-processing 

Flash sintering is a well-known technique for fabricating high-performance 
thermoelectric material that contains multiple controllable experimental conditions. The 
previous study has indicated that the voltage (𝑥)*), pulse duration (𝑥)!), number of 
pulses (𝑥)") and pulse delay (𝑥)+) are the most valuable experimental conditions, which 
we defined them as decision variables represents as 𝒙) where 𝑖 denotes the sample 
order. The experimentalist starts with 7 experiments to randomly fabricate TE device 
and based on the initials; they do single variable control to optimize the experimental 
conditions for getting the target (𝑦)), the power factor. 
 
Let D	 = 	 {(𝐱) , 𝑦)), |𝐱) 	 ∈ 	R+, 𝑦) 	 ∈ 	R, 𝑖	 ∈ 	1, . . . ,31}	 be a collection of flash sintering 
dataset, where the vector 𝒙𝒊 	 represents decision variables corresponding to the 
experimental result 𝑦). For convenience, we denote the data D	 = 	 (𝐗, 𝐲) using matrix 
𝐗	 = 	 (𝐱*, . . . , 𝐱-). and vector 𝐲	 = 	 (𝑦*, . . . , 𝑦-)&. 𝒙), 𝑦) each has different units that 
directly appliy them into GPR will fail the model performance. The simplest way to 
deal with it is by standardizing. Here, we use the standardization (1) to transform each 
decision variable and target centering around the mean equals zero with a unit standard 
deviation.  
 

𝑧 =
?𝒚 − 𝐸(𝒚)C
𝑉𝑎𝑟(𝒚) 	 (1) 
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2.2. Gaussian Process Regression 

During the experiment, randomness is unavoidable; it’s natural to consider observed 
error (𝜀) that we assume it is normally distributed with zero mean and variance 𝜎!, 𝜀	 ∼
	𝑁(0, 𝜎!) and incorporate it into the model through 𝑦) 	= 	𝑓(𝐱)) 	+ 	𝜀 where 𝑓(. ) is the 
objective function represents the behavior of different experimental conditions that can 
be defined as Gaussian Process (2). 
 

𝑓	 ∼ 	GP?𝑚(𝐱), 𝑘(𝐱, 𝐱/)C														𝐱, 𝐱/ 	 ∈ 	R0 (2) 
 
Here, for computation simplicity, we set 𝑚(𝐱) to zero. 𝑘(𝐱, 𝐱/) is the kernel function 
that mainly determined the behaviors of the GPR and we use Radial Basis Function 
(kRBF) for model fitting that 𝒍 ∈ 𝑅0 is the length-scale for the feature 𝒙. To reduce the 
number of parameters to address, 𝒍 can simply set as a scaler for human intuition which 
means the equally important in every feature. However, such methodology can’t satisfy 
the real-world application scenario that target is usually determined by few features 
among large multi-dimension features space. As (3) indicates, the length scale 𝒍 
represents the importance of the corresponding feature that the smaller the 𝒍, the more 
important that feature. Thus, to find the optimal 𝒍, log marginal likelihood and cross-
validation are introduced in later section and the tuned result provides insight 
information for the most important feature of 𝒙. 

𝑘123(𝑥, 𝑥/) = 𝑒
4*!∑ 6

7!47!
"

8!
	:
#

													$
!%& 𝜃 = 𝒍	 (3)

 

 
We define new inputs values 𝐗∗with corresponding prediction 𝐟∗. Given training data 
(𝐗, 𝐲) and values of the hyperparameters θ, we can write the outputs y	and f∗	 as a 
multivariate normal (Gaussian) distribution (4) where K(·,·) is kernel function k	
evaluated elementwise. The conjugacy properties of it give the prediction results (5).  
 

W
𝒚
𝒇∗Y ∼ 𝑵[\

𝒎(𝑿)
𝒎(𝑿∗)

_ , \𝑲(𝑿, 𝑿) + 𝝈
𝟐𝑰 𝑲(𝑿,𝑿∗)

𝑲(𝑿∗, 𝑿) 𝑲(𝑿∗, 𝑿∗)
_c (4) 

 

𝐸(𝒇∗) = 𝒎(𝑿∗) + 𝑲(𝑿∗, 𝑿)[𝑲(𝑿, 𝑿) + 𝜎!𝑰]4*?𝒚 −𝒎(𝑿)C (5𝑎) 

𝑉𝑎𝑟(𝒇∗) = 𝑲(𝑿∗, 𝑿∗) − 𝑲(𝑿∗, 𝑿)[𝑲(𝑿, 𝑿) + 𝜎!𝑰]4*𝑲(𝑿,𝑿∗) (5𝑏) 

 

2.3. Hyperparameter Tuning 

In this paper, we compare the performance of log marginal likelihood (LML) and cross-
validation (CV) for illustrating GPR hyperparameters 𝜃 for flash sintering applications. 
LML uses all the training data 𝐷 = (𝑿, 𝒚) to find the 𝜃 maximizing the function, which 
is given by (6). CV reduces the variance of the prediction evaluation; the conjugacy 
property of GPR largely reduces the computation cost, thus leave-one-out cross-
validation (Loo-CV) is adopted for evaluating optimal 𝜃 that maximize objective 
function 𝐿=>>4?@ (7) where training data is denoted as 𝐷4) = (𝑿4) , 𝒚4) 	) that −𝑖 means 
all data except sample 𝑖. 
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log 𝑝(𝒚|𝑿, 𝜃) = −
1
2𝒚

.[𝑲(𝑿, 𝑿|𝜃) + 𝜎!𝑰]4* −
1
2 log

|𝑲(𝑿,𝑿|𝜃) + 𝜎!𝑰| −
𝑛
2 log 2𝜋

(6) 

 

𝑙𝑜𝑔𝑃(𝑦)|𝑋4) , 𝑦4) , 𝜃) = −
1
2 log 𝜎)

! −
(𝑦) − 𝜇))!

2𝜎)!
−
1
2 𝑙𝑜𝑔2𝜋	#

(7𝑎) 

𝐿=>>4?@(𝑋, 𝑦, 𝜃) =
1
𝑛z𝑙𝑜𝑔𝑃(𝑦)|𝑋4) , 𝑦4) , 𝜃)

-

)A*

	 (7𝑏) 

 
The length scale of four decision variables is denoted by 𝑙*, 𝑙!, 𝑙", 𝑙+ respectively and 
observation error 𝜎 is set as a hyperparameter as well; each of them has a search region 
between (0, 1). Here, the low-dimensional optimization (e.g 5 variables) makes its 
computationally acceptable for applying grid search; if higher features space is applied, 
advanced optimization methods (e.g gradient descent) are preferred. 

3. Results 
3.1. Log Marginal Likelihood (LML) and Leave-one-out Cross-Validation (Loo-CV) 
identify similar hyperparameter values 

Table 1 has shown that we reached the same hyperparameter tuning results with either 
LML or Loo-CV. The first two rows give the optimal hyperparameters of 𝒍 when setting 
𝜎 = 0.1 as a fixed parameter. The optimal 𝒍 in both frameworks are exactly same that 
indicates, under the scenario of fixing observation error, there is not much difference 
between two methods for hyperparameter tuning at least for flash sintering dataset. 
Conversely, the last two rows illustrate when add 𝜎 as a hyperparameter, there is no 
difference between two methodologies as well. Figure 2 gives a parity plot of 𝜎 tuned 
with LML optimal hyperparameters,  𝑙* = 1, 𝑙! = 0.687, 𝑙" = 0.322, 𝑙+ = 1, 𝜎 = 0.2; it 
illustrates the capability of GPR using 𝐷4) to predict 𝒙). The x-axis and y-axis are 
experimental and predicted power factor respectively, the different labels correspond to 
different batch of experiments (details in 3.2), and error bars are given in one standard 
deviation.  
 
One thing worth notice is that when adding 𝜎 as a tuneable hyperparameter, the 𝑙! 
increases from 0.635 of 𝜎 fixed model to 0.687, and 𝜎 itself increase from the prefixed 
0.1 to 0.2. It’s related to the trade-off between bias and variance and corresponding to 
the conclusion that relative complex model (e.g 𝑙! = 0.635) usually obtaining low 
observation error (e.g 𝜎 = 0.1); while a much simpler model (e.g 𝑙! = 0.687) has 
higher observation error (e.g 𝜎 = 0.2). 
 

Table 1: LML and Loo-CV comparison 
 𝑙! 𝑙" 𝑙# 𝑙$ 𝜎 
𝜎 fixed: LML 1 0.635 0.322 1 0.1 
𝜎 fixed: Loo-CV 1 0.635 0.322 1 0.1 
𝜎 tuned: LML 1 0.687 0.322 1 0.2 
𝜎 tuned: Loo-CV 1 0.687 0.322 1 0.2 
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Figure 1: Parity plot of GPR in flash sintering 

 

 
Figure 2: Retrospective analysis of GPR in flash sintering 

 
3.2. Retrospective Analysis 

Figure 2 illustrates the retrospective analysis of GPR prediction in flash sintering 
dataset that data is separated to five sections by the dashed line, each corresponds to an 
experimental batch where the first section are initials that experimentalist conducting 
experiments with randomly chosen experimental condition (𝒙)) to form a batch and the 
rest are based on the initials to implement single variable control for optimizing the 
power factor (𝑦)). The experimentalists set different values of voltage (𝑥)*), pulse 
duration (𝑥)!), and pulse delay (𝑥)+) in each batch and optimize the number of pulses 
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(𝑥)") and find out the highest power factor (𝑦)) is given by  𝑥* = 2600𝑉, 𝑥! =
1.5𝑚𝑠, 𝑥" = 4, 𝑥+ = 400𝑚𝑠. 
 
The predicted power factor (squares) is generated iteratively that we first set the 
hyperparameters as 𝑙* = 1, 𝑙! = 0.687, 𝑙" = 0.322, 𝑙+ = 1, 𝜎 = 0.2 and regards the first 
sample as training dataset to fit the model and next sample as the testing dataset for 
prediction; then, we added next sample into the training dataset and iteratively doing so. 
We plot experimental results (diamonds) and predict results while 25 out of 30 samples 
are fallen into the predicted (with one standard deviation) bounds. We notice that the 
GPR performs poorly to predict the power factor largely above the main portions. It’s 
related to the smoothness of the GPR kernel function that most popular kernel functions 
(e.g RBF, Matern) are all hard to capture the drastic change of target values. 

4. Conclusion 
In this work, we successfully develop a GPR model for flash sintering of TE material 
that can predict the majority of power factor around the experimental results and 
illustrates the two most popular frameworks aren’t consequential for identifying optimal 
hyperparameter 𝜃, at least for our flash sintering dataset. Through both the parity plot 
(Figure 1) and retrospective analysis (Figure 2), we demonstrate the predictivity of the 
optimal 𝜃 in GPR; specifically, the retrospective analysis indicates the rationale to use 
GPR as surrogate model for Bayesian optimization framework that GPR precisely 
predict the behaviour of the objective function 𝑓(. ) that makes combining it with 
acquisition function to chooses the next experimental conditions that balance the trade-
off between exploration and exploitation possible. 
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