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Abstract 

Diafiltration is a continuous operating strategy for staged-membrane cascades, wherein dialysate is 
strategically added to offset concentration effects and achieve recovery of high purity and high value 
products. Although common for niche separations in industry, few studies have systematically analyzed 
multi-stage diafiltration processes. In this paper, we present a novel modeling and superstructure 
optimization framework 1) to elucidate optimal multi-stage process configurations with complex recycle 
strategies and 2) to systematically identify property targets for membrane materials. As an illustrative 
example, we consider the separation of lithium and cobalt ions for battery recycling. We find that if a 3-
stage diafiltration process is carefully designed, emerging membrane materials are likely to outperform 
existing technologies for Li/Co separation in battery recycling. Finally, we discuss planned extensions of 
the proposed work into a full molecules-to-systems framework for integrated molecular engineering of 
new materials for targeted separation processes. 
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Introduction

Diafiltration processes are common in the food and 
beverage, pharmaceutical industries (Lipnizki et. al., 2002) 
as an operating mode for membrane cascades for the 
recovery of high purity and high value products. It involves 
the addition of dilute solvent, known as the dialysate, to the 
feed side of a membrane to offset concentration effects as 
solvent permeates across the membrane. This allows more 
of the smaller molecular size solute to permeate through, 
resulting in a high purity retentate (Cheryan, 1998, Mulder, 
1998, Strathmann, 2011). Continuous diafiltration was 
introduced as a novel concept by Madsen (2001). Nambiar 
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et. al., (2018) demonstrated process feasibility for 400-fold 
removal of microsolute impurities from protein feed using 
a two-stage continuous countercurrent diafiltration system. 
Nevertheless, there is a lack of systematic frameworks to 
quickly and efficiently design continuous multi-stage 
diafiltration membrane cascade systems. There also exists a 
need to find the most promising applications for continuous 
membrane cascades. 

We propose a superstructure-based optimization 
framework for binary separation via continuous, multi-
stage diafiltration. Superstructure optimization is a well-
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established technique to rigorously search a set of process 
alternatives, i.e. system configurations, to minimize a well-
defined objective. See Chen and Grossman (2017), 
Cremaschi (2015), and Tian et. al. (2018) for recent 
reviews. The three major steps are: 1) postulate a 
superstructure representation that encodes all possible (or 
reasonable) interconnections of flow streams between units 
in the process networks; 2) define a mathematical model, 
which often includes mass and energy balances, physical 
property predictions, transport rates, equipment 
efficiencies, and costs. Often these models are highly 
nonlinear, include discrete decisions, and are nonconvex; 
and 3) select an appropriate computational algorithm and 
solve the optimization problem to identify the optimum 
process network configuration. In contrast to simulation 
techniques, superstructure optimization explicitly 
manipulates configuration parameters such as recycle 
strategies, split fractions, and the number of stages, and thus 
exploits many more degrees of freedom to search for novel 
system configurations. Superstructure optimization has 
been used to design optimum membrane network 
configurations for gas permeation systems (Uppaluri et. al., 
2004, Uppaluri et. al., 2006) and reverse osmosis (RO) 
based water purification systems (Khor et. al., 2011, Sassi 
and Mujtaba, 2013, Alnouri and Linke, 2014, Saif and 
Almansoori, 2015, Du et. al., 2015, Kotb, et. al., 2016, Du 
et. al., 2016). For example, Du et. al., (2016) used 
superstructure optimization to develop a novel permeate-
split design for RO networks which enabled a 0.67 – 6.82 
% reduction in unit production cost of water and 3.28 – 7.61 
% energy savings compared to conventional designs. This 
is one of several examples were superstructure optimization 
helped discover novel system configurations to achieve 
specific improved separation outcomes. 

As a demonstration case study, we consider continuous 
diafiltration cascades with polymer membranes to recover 
cobalt (Co) and lithium (Li) from spent lithium ion batteries 
(LIBs). The current worldwide production of Co and Li 
does not match the demand caused by the rapid growth of 
LIBs used in electronic devices and vehicles (Lv et. al. 
2018), necessitating the secondary recovery of these metals 
from spent batteries. The most commonly employed 
process for the extraction of cathodic materials from spent 
LIBs is acid leaching followed by solvent extraction, 
wherein the efficiency of the process increases with the 
strength of the solvents (e.g., lower pH) used (Zeng et. al., 
2014). We propose to mitigate the hazards associated with 
such a process by designing novel polymer membrane-
based diafiltration separations to recover metal rich buffer 
solutions that can be further processed to generate high 
purity metals. These membranes have several properties 
that can be tuned at a molecular level (Mulvena et. al., 2014) 
to control the permeability of Li relative to Co. For this 
application, we consider two questions: 
1. How do the tradeoffs between purity and recovery in a 

diafiltration cascade depend on the number of stages? 

2. What membrane material performance levels would 
make diafiltration a disruptive technology for LIB 
recycling? 

Mathematical Model  

  
Figure 1: Superstructure for LIB recycling using 

continuous diafiltration membrane cascade. The red box 
indicates the fresh feed input to the system (model 

parameter 𝑸𝒇𝒇) which is split into individual flow streams 
across the cascade (model variables 𝒒𝒇𝒇,𝒌,𝒍), shown by the 
red arrows. The purple box indicates the fresh dialysate 
input to the system (model parameter 𝑸𝒇𝒅) which is split 
into individual flow streams across the cascade (model 
variables 𝒒𝒇𝒅,𝒌,𝒍), shown by the purple arrows. Black 
arrows indicate recycled retentate to the immediately 

preceding stage (model variables 𝒒𝒓𝒆,𝒌,𝒍). Orange arrows 
in the top half of the figure are the retentate side products 
(model variables 𝒒𝒑𝒓,𝒌,𝒍) while the single orange arrow at 
the bottom of the figure is the permeate product (model 

variable 𝒒𝒑,𝑵,𝑴). Subscripts 𝒌 and 𝒍 respectively indicate 
the stage and element to which the stream is flowing, 

where the total number of stages is 𝑵 and the total number 
of elements per stage is 𝑴. 

 
To address these questions, we pose a superstructure 

for the continuous diafiltration membrane cascade, as 
shown in Figure 1. It consists of N staged membrane units 
with interconnecting streams and each stage is discretized 
into M finite elements. The streams mix only inside the 
membrane elements. System inputs of feed and dialysate 
can be injected at any point (element) in the cascade. 
Retentate can be withdrawn from the end of any stage and 
can be split into product and recycle streams. Recycle is 
admitted into only the immediately preceding stage (black 
arrows), but can be admitted to any location on the feed 
side. The retentate side product will be enriched in solute 
for which the membrane is less permeable. Cascading is 
realized by allowing the permeate at the end of one stage to 
enter as feed into the next. The permeate at the end of the 
last stage is withdrawn as product. It is rich is the more 
permeable solute. For the LIB recycling case study, we 
considered a charged membrane which was more selective 
to the monovalent solute, making the permeate enriched in 
Li while the retentate becomes enriched in Co. We highlight 
that this superstructure encodes all reasonable recycle 
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strategies for dialysate including those already 
experimentally demonstrated. 

Each membrane stage and flow stream 
interconnections are modeled as follows: 
 

Sets:  
ℐ =  {1, 2, … 𝑂} (solutes)  
𝒥 =  {𝑓𝑓, 𝑓𝑑, 𝑟𝑑, 𝑠𝑓, 𝑓, 𝑟, 𝑓𝑙, 𝑝, 𝑝𝑟, 𝑟𝑒}  
(all flow streams) 

 

𝒥ଵ =  {𝑓𝑓, 𝑓𝑑, 𝑟𝑑, 𝑠𝑓, 𝑓, 𝑟, 𝑓𝑙, 𝑝} ⊂ 𝒥  
(inlet streams) 

 

𝒥ଶ =  {𝑝𝑟, 𝑟𝑒} ⊂ 𝒥 (retentate side stage outlets)  
𝒥ଷ =  {𝑓𝑓, 𝑓𝑑, 𝑟𝑑, 𝑠𝑓}  ⊂ 𝒥ଵ  (feed side inlets)  
𝒥ସ =  {𝑟, 𝑓𝑙}  ⊂ 𝒥ଵ (element outlets)  
𝒥ହ =  {𝑓𝑓, 𝑓𝑑}  ⊂ 𝒥ଵ (system inlets)  
𝒦 =  {1, 2, … 𝑁} (stages)  
ℒ =  {1, 2, … 𝑀} (elements)  

 
ℐ is the set of all the solutes in the system. In the LIB 

case study, ℐ =  {1, 2} where solute 1 is Li and solute 2 is 
Co.  𝒥 contains the different flow streams modeled – ff: 
fresh feed, fd: fresh dialysate, rd: recycled dialysate, sf: 
secondary feed, f: element feed, r: retentate, fl: flux across 
membrane, p: permeate, pr: retentate product, re: recycled 
retentate. 𝒥ଷto 𝒥ହ are subsets of 𝒥ଵ. 𝒦 and ℒ denote the 
stages and elements, respectively. 

 
Material balances:  
∑ 𝑞௝,௞,௟௝ =  𝑄௝  ∀ 𝑗 ∈ 𝒥ହ, 𝑘 ∈ 𝒦, 𝑙 ∈ ℒ (1) 
𝑞௝,௞,௟ ≤  𝑄௝∀ 𝑗 ∈ 𝒥ହ, 𝑘 ∈ 𝒦, 𝑙 ∈ ℒ (2) 
𝑐௜,௝,௞,௟ =  𝐶௜,௝   ∀ 𝑖 ∈ ℐ, 𝑗 ∈ 𝒥ହ, 𝑘 ∈ 𝒦, 𝑙 ∈ ℒ (3) 
∑ 𝑞௝,௞,௟௝ =  𝑞௙,௞,௟  ∀ 𝑗 ∈ 𝒥ଷ, 𝑘 ∈ 𝒦, 𝑙 ∈ ℒ (4) 

෍ 𝑞௝,௞,௟

௝

×  𝑐௜,௝,௞,௟ =  𝑞௙,௞,௟ ×  𝑐௜,௙,௞,௟   

∀ 𝑖 ∈ ℐ, 𝑗 ∈ 𝒥ଷ, 𝑘 ∈ 𝒦, 𝑙 ∈ ℒ 

(5) 

∑ 𝑞௝,௞,௟௝ =  𝑞௙,௞,௟∀ 𝑗 ∈ 𝒥ସ, 𝑘 ∈ 𝒦, 𝑙 ∈ ℒ (6) 

෍ 𝑞௝,௞,௟

௝

×  𝑐௜,௝,௞,௟ =  𝑞௙,௞,௟ ×  𝑐௜,௙,௞,௟   

∀ 𝑖 ∈ ℐ, 𝑗 ∈ 𝒥ସ, 𝑘 ∈ 𝒦, 𝑙 ∈ ℒ 

(7) 

෍ 𝑞௝,௞,ெ

௝

=  𝑞௥,௞,ெ ∀ 𝑗 ∈ 𝒥ଶ (8) 

𝑐௜,௝,௞,ெ =  𝑐௜,௥,௞,ெ ∀ 𝑖 ∈ ℐ, 𝑗 ∈ 𝒥ଶ, 𝑘 ∈ 𝒦, 𝑙 ∈ ℒ (9) 

∑ 𝑞௥ௗ,௞,௟௟ =  𝑞௥௘,௞ାଵ,ெ ∀ 𝑘 ∈ 𝒦 \ N, 𝑙 ∈ ℒ (10) 
𝑐௜,௥ௗ,௞,௟ =  𝑐௜,௥௘,௞ାଵ,ெ ∀ 𝑖 ∈ ℐ, 𝑘 ∈ 𝒦  𝑁, 𝑙 ∈ ℒ (11) 
𝑞௥ௗ,ே,௟ =  0 ∀ 𝑙 ∈ ℒ (12) 
𝑞௥௘,ଵ,ெ =  0 (13) 
𝑞௥௘,௞,ெ =  0 ∀ 𝑘 ∈ 𝒦 \1 (optional) (14) 
𝑞௦௙,௞,௟ାଵ =  𝑞௥,௞,௟ ∀ 𝑘 ∈ 𝒦, 𝑙 ∈ ℒ \ 𝑀 (15) 
𝑞௦௙,ଵ,ଵ =  0 (16) 
𝑐௜,௦௙,௞,௟ାଵ =  𝑐௜,௥,௞,௟  ∀ 𝑖 ∈ ℐ, 𝑘 ∈ 𝒦, 𝑙 ∈ ℒ \ 𝑀 (17) 
𝑞௦௙,௞ାଵ,ଵ =  𝑞௣,௞,ெ ∀ 𝑘 ∈ 𝒦 \ 𝑁 (18) 
𝑐௜,௦௙,௞ାଵ,ଵ =  𝑐௜,௣,௞,ெ ∀ 𝑖 ∈ ℐ, 𝑘 ∈ 𝒦 \ 𝑁 (19) 
𝑞௦௙,ଵ,ଵ =  0 (20) 
𝑞௣,௞,௟ାଵ =  𝑞௙௟,௞,௟ାଵ +  𝑞௣,௞,௟∀ 𝑘 ∈ 𝒦, 𝑙 ∈ ℒ \ 𝑀 (21) 
𝑞௣,௞,௟ାଵ ×  𝑐௜,௣,௞,௟ାଵ (22) 

=  𝑞௙௟,௞,௟ାଵ ×  𝑐௜,௙௟,௞,௟ାଵ +  𝑞௣,௞,௟ × 𝑐௜,௣,௞,௟   
∀ 𝑖 ∈ ℐ, 𝑘 ∈ 𝒦, 𝑙 ∈ ℒ  𝑀 
𝑞௣,௞,ଵ =  𝑞௙௟,௞,ଵ∀ 𝑘 ∈ 𝒦 (23) 
𝑐௜,௣,௞,ଵ =  𝑐௜,௙௟,௞,ଵ∀ 𝑖 ∈ ℐ, 𝑘 ∈ 𝒦 (24) 

 
In the material balance equations, q indicates flow 

(mଷ/s), and c indicates the concentration (kg/mଷ), and are 
model variables in the optimization problem. Q and C are 
the system input flow and concentration, and thereby inputs 
to the optimization problem. For the case study, we 
considered a ff flow of 100.2 (mଷ/s) containing 1.7 (kg/mଷ) 
of Li and 17 (kg/mଷ) of Co along with fd flow of 120.1 (mଷ/s) 
with 0.1 (kg/mଷ) of Li and 0.2 (kg/mଷ) of Co. Eqs. (1) to (3) 
specify the inputs to the cascade diafiltration system. Eq. (1) 
allow streams ff and fd to be injected at any point in the 
cascade. Eqs. (4) and (5) model the inlet mixer to each 
element, while (6) and (7) model the feed side finite element 
of a membrane stage. A splitter is used at the end of every 
stage to divide the retentate into product and recycle 
streams, governed by (8) and (9). Eqs. (10) to (14) model 
recycle between successive stages. Eq. (14) is an optional 
constraint that is used to analyze the cascade configuration 
without recycle. Connectivity between elements of the same 
stage on the feed side is modeled using (15) to (17) by 
linking the retentate and secondary feed streams. Cascading 
between stages is realized by allowing the permeate out of 
the last element to enter as secondary feed to the first 
element of the next stage, using (18) to (20). Eqs. (21) to 
(24) model the material balances on the permeate side of the 
stage. Flow streams that cannot be physically realized are 
set to 0. For example, (12) arises from the fact that in our 
present configuration, there can be no recycle streams as 
inlet to the last membrane stage. 

 
Membrane transport phenomena:  

𝑞௙௟,௞,௟ =  
௃ೈ ×௅ೖ ×ௐ

ெ
 ∀ 𝑘 ∈ 𝒦, 𝑙 ∈ ℒ (25) 

𝑙𝑜𝑔൫𝑐௜,௥,௞,௟൯ + (𝛼௜ − 1)  × 𝑙𝑜𝑔൫𝑞௙,௞,௟൯ 

=  𝑙𝑜𝑔൫𝑐௜,௙,௞,௟൯ +(𝛼௜ − 1)  × 𝑙𝑜𝑔൫𝑞௥,௞,௟൯  
∀ 𝑖 ∈ ℐ, 𝑘 ∈ 𝒦, 𝑙 ∈ ℒ 

(26) 

 
Transport characteristics of the membrane are derived 

from first principle differential material balances. Eq. (25) 
governs the flux across the membrane, and (26) captures the 
concentration profile in the system. A log transformation is 
used in (26) to improve numeric conditioning. In the above 
equations, 𝐽ௐ is the specific flux across the membrane ( ୫య

୫మ ୱ
), 

L and W denote the length and width of a membrane element 
(m), while 𝛼 is the dimensionless membrane separation 
factor parameter. For the optimization problem, 𝐽ௐ, W, 
𝛼ଵ(separation factor for Li) and  𝛼ଶ (separation factor for 
Co) were held constant at 1.2 ୫య

୫మ ୱ
, 1.5 m, 1.3 and 0.5, 

respectively. Additionally, the height of the membrane 
channel (H) was fixed at 1.2 m, while the length of the 
membrane was a decision variable in the problem, thus 
enabling optimization of membrane area. 
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Purity and recovery of products:  

𝑅௣ =  
𝑞௣,ே,ெ × 𝑐ଵ,௣,ே,ெ 

𝑄௙௙ × 𝐶ଵ,௙௙ +  𝑄௙ௗ × 𝐶ଵ,௙ௗ

 (27) 

∑ 𝑄
𝑗
𝑐𝑖,𝑗𝑗 − 𝑞

𝑝,𝑁,𝑀
× 𝑐1,𝑝,𝑁,𝑀

∑ 𝑄
𝑗𝑗 − 𝑞

𝑝,𝑁,𝑀

≤ 𝑐1ഥ ∀ 𝑗 ∈ 𝒥5 
(28) 

𝑅௥ =  ෍ 𝑄௝𝑐ଶ,௝

௝

− 𝑞௣,ே,ெ × 𝑐ଶ,௣,ே,ெ∀ 𝑗 ∈ 𝒥ହ (29) 

  
Our model tracks the purity and recovery of 

products as quantities of interest. Eq. (27) is the recovery of 
the permeate side product 𝑅௣ (Li rich solution). Eq. (28) is 
the purity constraint, limiting Li in the retentate product 
which is rich in Co. We use the convention of overbars and 
underbars to indicate upper and lower bounds, respectively. 
The recovery of the retentate product 𝑅௥ is modeled by (29). 

Modeling both 𝑅௣ as well as 𝑅௥ gives us the 
freedom to maximize either the recovery of Li or Co by 
changing the objective function of the optimization 
problem. In the following case study, we chose to maximize 
the recovery of Co, which is the more valuable solute.  

 
System dimensions:  

𝜃௞  ×  ෍ 𝑞௝,௞,௟

௝,௟

+  𝑞௦௙,௞,ଵ =  𝑞௣,௞,ெ  

∀ 𝑗 ∈ 𝒥  𝑠𝑓, 𝑘 ∈ 𝒦, 𝑙 ∈ ℒ 

(30) 

෍ 𝐿௞

௞

× 𝑊 × 𝐻 =  𝐴௠ ∀ 𝑘 ∈ 𝒦 (31) 

 
Stage cuts 𝜃 (dimensionless) are defined by (30). The 

bounds on the stage cuts (38) prevent any single membrane 
stage from becoming too large, which would result in 
subsequent stages of the cascade being starved of feed. 
Expression (31) is used to calculate the overall membrane 
area 𝐴௠ (mଶ) across all stages required for a given process. 
This quantity is also bounded to a finite value (37). 

 
Physical bounds:  
0 ≤ 𝑞௝,௞,௟ ≤ 𝑞ത, ∀ 𝑗 ∈ 𝒥ଵ, 𝑘 ∈ 𝒦, 𝑙 ∈ ℒ (32) 
0 ≤ 𝑞௝,௞,ெ ≤ 𝑞ത, ∀ 𝑗 ∈ 𝒥ଶ, 𝑘 ∈ 𝒦 (33) 
0 ≤ 𝑐௜,௝,௞,௟ ≤ 𝑐̅, ∀ 𝑖 ∈ ℐ, 𝑗 ∈ 𝒥ଵ, 𝑘 ∈ 𝒦, 𝑙 ∈ ℒ (34) 
0 ≤ 𝑐௜,௝,௞,ெ ≤ 𝑐̅, ∀ 𝑖 ∈ ℐ, 𝑗 ∈ 𝒥ଶ, 𝑘 ∈ 𝒦 (35) 
𝐿 ≤ 𝐿௞ ≤ 𝐿ത, ∀ 𝑘 ∈ 𝒦 (36) 
𝐴௠ ≤ 𝐴௠ ≤ 𝐴௠

തതതത (37) 

𝜃 ≤ 𝜃௞ ≤ 𝜃̅, ∀ 𝑘 ∈ 𝒦 (38) 
𝑅௣ ≥ 𝑅௣ (39) 

 
 The bounds on the system ensure that any solution 
obtained is physically realizable. For instance, the bounds 
on the flows, (32) and (33), prevent high recirculation rates 
in the system, which would incur uneconomically high 
piping and pumping costs. As before, we use underbars and 
overbars to indicate lower and upper bounds, respectively. 
The bounds 𝑞ത=550 (mଷ/s), 𝑐̅=10 (kg/mଷ), 𝐿=0.1 (m), 𝐿ത=1000 

(m), 𝐴௠=0 (mଶ),  𝐴௠
തതതത=1000 (m2), 𝜃=0.01, 𝜃̅=0.99, and 𝑅௣= 

0.005 were used in the case study. 
 
Optimization problem (OPT1): 
 

max Recovery retentate product Eq (29) 
s.t.   Material balances Eq. (1) – (24) 

 Transport phenomena Eq. (25) – (26) 
 Product purity and recovery Eq. (27), (28) 
 System dimensions Eq. (30), (31) 
 Physical bounds Eq. (32) – (39) 

 
Optimization problem (OPT1) is implemented in 

Julia (Bezanson et. al., 2017) using JuMP modeling package 
(Dunning et. al., 2017). All instances were solved using the 
Ipopt (Wächter & Biegler, 2006) and the MA27 linear 
solver (HSL, 2014). For sense of model size, a ten-stage, 
ten-element problem has 2070 variables with 1759 equality 
constraints and 1 inequality constraint. Ipopt reliably finds 
an optimal solution in less than 0.9 seconds. In a sensitivity 
analyses of 10 values of N (number of stages) and 120 
values of 𝑐ଵഥ  (purity), it took 116 minutes to solve 1200 
independent instances of (OPT1) using 10 cores in parallel 
on a high-performance cluster with dual Intel Xeon 
processors (2.5 GHz) and 256 GB of memory per node. 
Results from this sensitivity analysis are shown in Figures 
2 and 3. 

Results and Discussion 

The optimization framework is applied to maximize the 
recovery and purity of a Co rich buffer solution as the 
retentate side product from a continuous diafiltration 
membrane cascade in two case studies. 
 
Case Study 1: Baseline and Material Property Targets 
 

 
Figure 2: Sensitivity analysis results showing trade-

offs between number of stages (N) and Li in the retentate 
(Co rich) product for a membrane with 𝜶𝑳𝒊 = 𝟏. 𝟑. 

 
We first characterize the trade-offs between retentate 

product purity and Co recovery using a membrane with Li 
separation factor of 1.3, which is comparable to values 
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reported by Armstrong et. al., (2013) and Qu et. al., (2015).  
Figure 2 shows the results of resolving (OPT1) for  
N=1 to N=10 stages and retentate purity limit of 𝑐ଵഥ =0.001 
(kg/mଷ) to 𝑐ଵഥ =0.75 (kg/mଷ) Li. Because this is a binary 
separation, imposing an upper bound on Li concentration is 
equivalent to a lower bound on Co concentration. For a 
given purity, increasing the number of stages significantly 
increases the Co (product of interest) recovery. However, 
the results also show that the material under consideration 
does not possess the properties required to replace existing 
technologies in LIB recycling, such as Zhang et. al. (1998) 
which is marked with a red star in Figures 2 and 3. Efforts 
in developing novel membrane materials should be directed 
to shifting the curves in Figure 2 toward the red star, i.e. into 
the target design space.  
 
Case Study 2: Higher Performance Materials 

 
Figure 3: Sensitivity analysis for 𝛼௅௜ = 13 membrane 
material. The performance curves for N=4 to N=10 
overlap. 
  

Next, we consider a membrane with a 10-fold 
larger Li permeability. We note that White et. al., (2016) 
and Zhu et. al., (2017) both report Li/Co selectivities greater 
than 1000, thus 𝛼௅௜ = 13 is very reasonable. Figure 3 shows 
results from repeating the sensitivity analysis. With this 
modest increase in material performance, we predict a 
three-stage diafiltration membrane cascade is competitive 
with existing technology to concentrate the buffer solutions 
from LIB recycling. This is consistent with engineering 
intuition: increasing membrane permeability to Li increases 
its permeation through the membrane, more efficiently 
separating Li from Co in the feed solution, which results in 
a higher purity and recovery of Co in the retentate product. 
Moreover, the performance curves for N=4 to N=10 systems 
overlap in Figure 3, suggesting limited benefits from 
complex, many-stage designs. We also predict a carefully 
designed diafiltration cascade can achieve a 100-fold 
reduction in Li contamination with minimal impact on 
recovery compared to existing technologies. We highlight 
this superior performance is not possible with a one- or two-
stage membrane, which underscores the importance of 
systems modeling and superstructure optimization. 
Experimental characterization of only a two-stage 

configuration such as done in Nambiar et. al. (2018) would 
likely miss this opportunity.   
 
Figure 4 shows the optimum configuration for a 3-stage 
system with the higher Li permeability membrane (𝛼௅௜ =
13). In this system design, all of the feed is injected near 
the middle of the first membrane stage, and all of the 
dialysate in added to the beginning of that last stage. Co rich 
product is withdrawn almost entirely (97.6% of total Co rich 
product) from the retentate side of the first stage, with the 
rest coming from the second stage. 96.3% of the retentate 
from the second stage and all the retentate from the third 
stage are recycled as dialysate to the preceding stage.   
  

 
Figure 4: Optimum configuration for a 3-stage system that 
achieves 99.72% recovery of Co with Li concentration 
(impurity) of 0.27 (kg/mଷ) 

Conclusions and Future Work 

We propose a novel superstructure optimization 
framework to analyze and design multistage continuous 
diafiltration membrane cascades. Motivated by recent 
demand for energy storage technologies, we consider binary 
separation of lithium (Li) and cobalt (Co) ions for lithium 
ion battery recycling (LIB) as an example. Through 
sensitivity analysis, we determine material property goals 
(target values for Li selective) that could enable optimally 
designed 3-stage diafiltration cascades to outperform an 
existing LIB recycling technology.  

We envision several extensions to fully realize a 
molecules-to-systems engineering framework that 
integrates predictive modeling, nanomaterial design, and 
lab-scale systems demonstrations.  We plan to extend our 
model to incorporate both cost considerations and intricate 
mass transport mechanisms to better understand the 
underlying physics governing the process, and thereby 
design better materials. We seek to develop quantitative 
structure – property – processing relationships using data 
such as Rzayev (2005) and Weidman (2015). Such models 
would extend the superstructure optimization framework to 
consider material synthesis and processing, thereby offering 
systematic approach to inverse material design. We are also 
interested in parameter estimation and Bayesian inferential 
techniques to enable high-throughput characterization of 
novel membrane materials using dynamic data from simple 
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laboratory experiments. Finally, this application further 
motivates many outstanding computational challenges at 
the intersection of multiscale modeling, uncertainty 
quantification, and stochastic optimization for inverse 
design of membrane materials and associated systems, 
which we plan to explore.  
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