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Abstract

Real-time energy pricing has caused a paradigm shift for process operations with
flexibility becoming a critical driver of economics. As such, incorporating real-time
pricing into planning and scheduling optimization formulations has received much
attention over the past two decades (Zhang and Grossman, 2016). These formulations,
however, focus on 1-hour or longer time discretizations and neglect process dynamics.
Recent analysis of historical price data from the California electricity market (CAISO)
reveals that a majority of economic opportunities come from fast market layers, i.e., real-
time energy market and ancillary services (Dowling et al., 2017).

We present a dynamic optimization framework to quantify the revenue opportunities of
chemical manufacturing systems providing frequency regulation (FR). Recent analysis of
first order systems finds that slow process dynamics naturally dampen high frequency
harmonics in FR signals (Dowling and Zavala, 2017). As a consequence, traditional
chemical processes with long time constants may be able to provide fast flexibility
without disrupting product quality, performance of downstream unit operations, etc. This
study quantifies the ability of a distillation system to provide sufficient dynamic
flexibility to adjust energy demands every 4 seconds in response to market signals. Using
a detailed differential algebraic equation (DAE) model (Hahn and Edgar, 2002) and
historic data from the Texas electricity market (ECROT), we estimate revenue
opportunities for different column designs. We implement our model using the algebraic
modeling language Pyomo (Hart et al., 2011) and its dynamic optimization extension
Pyomo.DAE (Nicholson et al., 2017). These software packages enable rapid development
of complex optimization models using high-level modelling constructs and provide
flexible tools for initializing and discretizing DAE models.

Keywords: electricity markets, demand response, smart manufacturing, nonlinear
programming, distillation

1. Introduction: Frequency Regulation Markets

Modern electricity infrastructures use complex hierarchical wholesale markets to
coordinate generation, loads, and transmission networks. This results in temporal and
spatial variations in prices set at multiple timescales (e.g., 1-hour prices in day-ahead
markets, 5- to 15-minute prices in real-time markets) that directly impact large electricity
producers/consumers including traditional utility companies, aggregators, and some
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industrial sites. Dowling et al. (2017) and Zhang and Grossmann (2016) provide thorough
background in electricity markets and emphasize emerging opportunities for industrial
participants. Many recent studies focus on extending planning and scheduling
formulations to account for time-sensitive energy prices.

Ancillary services, i.e., spinning/non-spinning reserves and frequency regulation
capacity, are critical to provide contingency at fast timescales (minutes to seconds) and
ensure grid reliability. Resources providing reserve capacity are compensated for making
a commitment to either increase generation or shed load if dispatched. Often this dispatch
occurs once a week or less and can provide new revenue opportunities for flexible
industrial sites. Zhang et al. (2015) explore optimal scheduling strategies of reserve
capacity under uncertainty for air separation units. Analysis of California market data
shows that frequency regulation offers significantly greater revenue opportunities, but
also requires more intimate integration with the grid (Dowling et al., 2017). Resources
providing FR capacity must adjust their energy production/demands every 4 seconds in
accordance with grid dispatch. As such, this market opportunity has received significantly
less attention as it requires careful consideration of system dynamics. Dowling and Zavala
(2017) formulated FR capacity allocation as a dynamic optimization problem,

minftfd)(z(t),u(t),d(t))dt
0

s.t., 2= f(z(),u(t),d(t))
9(z(®),y(®),d(®) <0 (M
y(t) = h(z(t))
d(t) = 1B (t) —1_B_(t)

0<rm,r

where z(t) represents the states, y(t) represents the observations, u(t) represents the
controls, and d(t) represents the disturbances. The (non)linear functions f(-), g(-), and
h(-) capture the system dynamics, operating restrictions, and transformation from states
to observations, respectively. In this formulation, the dispatch signals coming from the
grid for regulation up and down are encoded in S, (t) and S_(t), respectively, and are
treated as disturbances. The economic objective is often ¢ = r,m, + r_m_ where ;. and
r_ are the committed regulation up and down capacities during an hour and w, and w_
are the respective capacity prices. Thus, problem (1) seeks to maximize the revenue from
frequency regulation capacity (i.e., maximizes the size of the disturbance) while
determining a control strategy that maintains operational feasibility. This formulation is
a generalization of Fares et al. (2014), which focuses exclusively on grid-scale redox flow
batteries. Other emerging FR market participants include aluminium smelters (Zhang and
Hug, 2014) and commercial HVAC systems (Lin et al., 2015).

2. Mathematical Models and Software Implementation

Many industrial sites have on-site utility plants that can directly participate in electricity
markets. In this context, providing FR capacity requires either modulating electricity
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demands of equipment such as pumps, arc furnaces, etc. (Zhang and Hug, 2014) or
modulating steam production rates. Using the general formulation (1), Dowling and
Zavala (2017) characterized revenue opportunities for a methanol-water distillation
system providing FR by adjusting the energy input (reboiler steam flow rate). A key
limitation of this analysis is that it relies on the simple two-input two-output transfer
function model from Wood and Berry (1973) for a laboratory-scale system. Instead, the
present work combines optimization formulation (1) with more detailed differential
algebraic equation models. Thus, we seek to extend the results to industrial scale systems
and explore how design decisions (e.g., holdup capacities) impact system dynamics and
thus revenue opportunities. We start by considering the dynamic model from Hahn and
Edgar (2002) adapted to a methanol-water separation with 8 trays:

Total condenser (tray 1): '%1 = ! V(y, —x;) 2)

cond
o . dx;
Rectifying trays (i=2, ... 4): 5 = ==Ly (ticy = %) = V(¥ = Yia)] 3)
Feed tray (i=5): %= ——[Fxp + Ly x;_y — Ly X; + V¥; = Yia)] 4
tray
s 5 5 dx; 1

Stripping trays (i=6, .... 90 5 = 7= [LsCxis = %) = Vi = Yisa)] 5)

Partial reboiler (tray 10): % = A; [Lg x;—q — (F — D)x; — Vy;] (6)
reb

Condenser mass balance: V =L, +D (7

Saturated liquid feed quality: L; =L, + F ®)

Reflux ratio: R = % C)

Constant relative volatility i =2, ..., 10): a = (yfy—‘)"x) (10)

Reboiler energy balance: Q = AH,,,V (11)

where index 7 indicates the tray, x(t), y(t) are mole fractions of methanol, F and x; are
the constant feed flow rate and composition, L,.(t) and L, (t) are the liquid flow rates in
the rectifying and stripping sections, respectively, V (t) is the vapor flow rate, D (t) is the
distillate product flow rate, R(t) is the reflux ratio, Q(t) is the reboiler duty, and 4H,,q4,
is the constant heat of vaporization (40 kJ/mol). This model assumes constant total molar
holdups (Acong = 0.5, Ay = 0.25, A,.p = 1.0 moles), constant molar overflow, and
constant relative volatility (o = 4.02). Eqns (2) — (8) arise from mass balances, Eqn (9)
is a definition, and Eqn (10) captures vapor-liquid equilibrium. Eqns (2) — (10) are from
Hahn and Edgar (2002), whereas Eqn (11) was added to calculate the reboiler energy
input. Similar to Dowling and Zavala (2017), we use the reboiler duty to track the
regulation signal as follows:

QW) =B, (), — B +Q (12)

where Q (t) is the time-varying reboiler duty, 8, (t) and B_(t) are the regulation tracking
signals (input data), . and 7. are the regulation capacity commitments (decision-
variables) and Q is the reboiler duty offset (decision-variable). For most industrial sites,
the distillation system would not be bidding by itself into the market, but instead the
electricity generation of the onsite utility system would be modulated to track the FR
signal. This would cause variations in the steam production flowrate, which would be
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absorbed by the flexibility of several steam consumers. The present study focuses on the
distillation system and does not consider dynamics of the utility plant. Thus Eqn (12)is a
simplification and corresponds with an electrically heated reboiler. Using operational
bounds on the distillate 0.92 < y, (¢t) < 1.0, bottoms 0.0 < x;,(t) < 0.02, and reflux
ratio 0.1 < R(t) < p and Eqns (2) — (12), we express the FR market participation
problem in the form of (1). Unit conversions are omitted for brevity.

For each hour of data, we solve a nonlinear program (NLP) to determine the regulation
capacity commitments, r,,r_, and optimal reflux ratio control profile, R(t), that
maximizes FR market revenue while satisfying path constraints (i.e., product quality
bounds). Input data were obtained from the ERCOT website' and include the regulation
capacity prices, ., _, which are set in 1-hour intervals and the regulation dispatch
signals, B, (t), B_(t), which are available in 4-second intervals. These models are
implemented in Pyomo and Pyomo.DAE. Pyomo is an algebraic modeling language built
on top of the Python programming language and Pyomo.DAE is an extension to Pyomo
for representing and solving dynamic optimization problems. Moreover, Pyomo.DAE
allows us to directly implement the derivatives and differential equations in Eqns (2) —
(12), exploit DAE simulation tools for initialization, and automate the transformation of
the continuous-time model into a discrete approximation. For this particular problem, we
choose a backwards Euler discretization (although several other discretization schemes,
including collocation over finite elements, are also natively supported in Pyomo.DAE)
with a 4-second time step to match the resolution of S, (t), B_(t). A 1-hour horizon
resulted in a NLP with approximately 32,000 variables (with bounds) and equality
constraints. IPOPT (Wichter and Biegler, 2006) was used to solve these problems,
requiring up to 5 minutes per instance.

3. Results and Discussion

The previously described NLP was solved for each hour of March 1%, 2016 using
historical market data ., w_, 5, (t), f_(t) as input parameters. Figure 1 shows the time-
evolution of the bottoms composition, distillate composition, and reflux ratio. For the
bottoms composition and the reflux ratio, the upper bounds are active during the first 1-
hour horizon.
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Figure 1. Composition of the bottoms (left), composition of the distillate (center), and reflux ratio (right) as a
function of time with p = 1. Dashed lines indicate operational bounds.

A key advantage of model Eqn (2) — (12) and formulation (1) is the ability to explicitly
connect design decisions with revenue opportunities from FR markets. Interestingly, we
find that increasing the reboiler holdup 4., from 1.0 moles to 10.0 moles only increases
revenues by 3%. This trend makes sense as larger holdups give rise to slower system

! http://www.ercot.com/mktrules/pilots/frrs
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dynamics which further increases the ability to reject fast market signals. We also find
that revenues are extremely sensitivity to the maximum reflux ratio p as shown in Figure
2. Furthermore, realizing the revenues for p = 10 require dramatic changes in the reflux
ratio, which may not be acceptable to operators. This is because of the constant holdup
and constant molar overflow assumptions in the system model. The vapor flow rate VV and
thus reboiler duty Q are tightly coupled with the reflux ratio R, and thus p acts as an
implicit bound on Q and thus regulation capacity. Furthermore, the chosen composition
operating bounds are such that the upper bound on R limits the FR capacity and not the
system dynamics. Again, this explains why revenue weakly depends on A,.,. These
insights are not available from the transfer function model previously analysed.
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Figure 2. Sensitivity analysis of revenue with respect to the upper bound for reflux ratio (p). Revenue is scaled
for nominal reboiler duty of 1 MW.

4. Conclusions and Future Directions

Opportunities in FR markets are emerging for chemical industrial systems. Their
inherently slow dynamics filter out high-frequency disturbances from market signals.
This paper expands upon a dynamic optimization framework that explicitly calculates
revenue opportunities from historic market data and dynamic process models. We believe
that the presented modelling and optimization tools are an essential first step to
understanding and exploiting revenue opportunities ranging from $100 to $2,500 / day
for a | MW (nominal) system. In the presented distillation case study, sensitivity analysis
is used to understand how design decisions impact system dynamics and market revenues.
In particular, we find that column diameter (which limits reflux ratio) is much more
important than reboiler holdup capacity. Pyomo and Pyomo.DAE facilitate rapid model
development, debugging, initialization, and automation of data-driven analysis, which
has historically been difficult for dynamic optimization with algebraic modelling
languages such as GAMS, AMPL, AIMMS, etc.

As future work, we plan to consider more detailed dynamic models with variable material
holdups, such as those from Lopez-Negrete et al (2013). We hypothesize that the current
case study underestimates the flexibility and thus revenue opportunities of distillation
systems because holdup capacities are fixed. We anticipate that it is possible to further
increase the range of feasible energy inputs by strategically controlling holdups levels.
An industrial FR capacity provider would likely exploit flexibility from several sources.
We plan to investigate other equipment (e.g., pumps) as well as plant-wide coordination
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schemes. Moreover, the present analysis assumes perfect information and may
overestimate realistic market revenues. As future work, we plan to characterize the impact
of market uncertainty on chemical manufacturing systems, and anticipate PySP, a
separate Pyomo extension for stochastic programming, will be especially helpful (Watson
et al, 2012). Finally, we plan to expand the case study to balance new market revenue
against operating costs from more dynamic operation such as equipment wear-and-tear.
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