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Abstract— Undoubtedly, evolving wholesale electricity mar-
kets continue to provide new revenue opportunities for diverse
generation, energy storage, and flexible demand technologies.
In this paper, we quantitatively explore how price uncertainty
impacts optimal market participation strategies and resulting
revenues. Specifically, we benchmark 2-stage stochastic pro-
gramming formulations for self-schedule and bidding market
participation modes in a receding horizon model predictive
control framework. To generate probabilistic price forecasts,
we propose an autoregressive Gaussian process regression
model and compare three sampling strategies. As an illustrative
example, we study a price-taker generation company with six
unique generation units using historical price data from CAISO
(California market). We show that self-schedule is sensitive
to the error in the forecast mean, whereas bidding requires
price forecasts that cover extreme events (e.g., tails of the
distribution). We benchmark realized market revenue against
optimal bidding with perfect information and find static bid
curve, time-varying bid curve, and self-schedule modes recovery
95.29%, 94.85%, and 84.87% of perfect information revenue,
respectively.

I. INTRODUCTION
In the modern smart grid paradigm, hierarchical mar-

kets, including the day-ahead markets (DAM), the real-
time markets (RTM), the ancillary service markets, ensure
that the electricity demand and supply are synchronized
by coordinating a diverse set of energy systems [1], [2].
Moreover, market transaction volumes have increased to
help balance the increased integration of intermittent and
renewable resources. Participation in the market provides
electrical energy generation companies (GenCos), energy-
intensive industrial systems, energy storage systems, and
new technologies like hybrid systems great revenue oppor-
tunities by exploiting advanced control algorithms [2]. A
standard technique to quantify economic opportunities for
these technologies is to calculate the maximum possible
revenue in retrospect [3]. Recently, several retrospective stud-
ies consistently find the greatest revenue opportunities from
fast market timescales (e.g., real-time markets) and ancillary
service products (e.g., frequency regulation, reserves) [1],
[4], [5], [6]. These retrospective analyses all assume perfect
information, i.e., ignore price, weather, and other sources of
market uncertainty, and thus only provides an upper bound on
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revenue opportunities. In reality, resources participate in the
wholesale energy markets under uncertainty via two modes:
self-schedule and bidding.

When a resource self-schedules into the market, it deter-
mines when and how much electricity to generate/consume
as a function of time. This decision can be formulated as
a single or multi-stage stochastic program where resources
seek to minimize their expected operational cost or max-
imize expected revenues. Future energy prices are treated
as uncertain parameters, where price forecasts are used to
generate scenarios. Autoregressive moving average (ARMA)
and autoregressive integrated moving average (ARIMA) are
the most popular price forecasting methods [7], [8], [9],
[10]. Self-schedule examples in literature include thermal
generators [11] and energy-intensive industrial separations
[8]. Recently, Kumar et al. studied the payback period of
a stationary battery system under load and price uncer-
tainty. They proposed a Ledoit-Wolf covariance estimator
to generate scenarios for a 2-stage stochastic program [12].
Baringo et al. demonstrated self-schedule strategies for a
virtual power plant, which included a conventional power
plant, energy storage, wind generations, and a demand unit,
under wind production and price uncertainties [13].

Fig. 1. Bid curves for the six thermal generators (Coal 1, Coal 2,
CCGT1, CCGT2, Oil 1, Oil 2) in the illustrative case study. Each bid curve
communicates the generator’s ability (or willingness) to provide different
amounts of electric power generation (MW) as a function of market clearing
price ($/MWh). These specific time-varying bid curves were generated with
the contour sampling technique using forecasts for CAISO prices at 4pm
on Jan. 24th, 2015. See Sections II and III for details.

Alternatively, an energy resource submits bid curves to the
market. Bid curves are piece-wise constant price and power
pairs, as shown in Fig. 1. A bidding curve communicates
to the market the resource’s flexibility and marginal costs.
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Calculation of time-varying bidding curves for the DAM
and RTM is also formulated as stochastic programs, and
again the expected operational cost (revenue) is minimized
(maximized). A non-decreasing constraint, an analog to a
non-anticipativity constraint, enforces the shape. For ex-
ample, a 2-stage stochastic program is proposed to derive
a bidding strategy for thermal generators [7] and energy-
intensive aluminum smelter [14]. Stochastic programs have
also been applied to derive bidding curves for renewable
energy systems such as wind power and concentrating solar
power plants where renewable energy input is uncertain [9],
[10].

In the context of the above summarized prior work, this
paper makes several contributions. Instead of ARIMA and
other popular price forecasting methods (see Weron for a
detailed literature review [15]), we propose an autoregressive
Gaussian process regression method to generate probabilistic
price forecasts. We then quantify revenue opportunities for
self-schedule and bidding models in a model predictive
control (MPC) receding horizon framework for an entire
year using historical data from the California Independent
System Operator (CAISO) market. Finally, we discuss how
three different scenario generation strategies impact the
profitability of self-schedule and bidding modes. Section
II presents Gaussian process regression and stochastic pro-
gramming mathematical models. Section III presents results
from an illustrative case study. Finally, Section IV presents
conclusions and directions of future work.

II. MATHEMATICAL FORMULATION

A. Gaussian Process Regression for Price Forecasts

We start by describing the Gaussian process regression
framework using notation from Bishop [16]. We postulate
a Gaussian distribution with a zero mean and a covariance
KKK constructed by the kernel function k(·, ·) as a prior
distribution for the underlying energy price function yyy:

p(yyy) = N (yyy|000,KKK) , (1)

where KKK is the Gram matrix with elements KKKmn = k(xxxm,xxxn)
and xxx is the input to the Gaussian process with D dimensions.
We select a radial-based function (RBF) with automatic
relevance determination (ARD) for the kernel [17]:

k(xxxm,xxxn) = σ2
f exp[−1

2

D

∑
i=1

(xmi − xni)
2

l2
i

] , (2)

with length scales li and variance σ2
f . Given additive “obser-

vation” noise ε , we have the relationship between the realized
price π and the underlying price function y:

πππ = yyy+ εεε (3)

This leads to a Gaussian likelihood for the N observed
historical prices πππ:

p(πππ|yyy) = N (πππ|yyy,β−1IIIN) (4)

where β is the precision of the “observation” noise. Using
the properties of linear Gaussian models, one can derive the
marginal likelihood function [16]:

p(πππ) =
󰁝

p(πππ|yyy)p(yyy)dyyy = N (πππ|000,CCC) (5)

where CCC = KKK+β−1IIIN . The marginal likelihood computed in
Eq. (5) assumes the observed prices πππ follow a joint Gaussian
distribution. This assumption extends to an unobserved future
price π∗ at a new input xxx∗:

p(πππ∗) = N (πππ∗|000,CCC∗) . (6)

The extended covariance matrix CCC∗ becomes,

CCC∗ =

󰀕
CCC kkk
kkkT c

󰀖
, (7)

where kkk is a vector of k(xxxn,xxx∗) for n = 1, ...,N and c is a
scalar k(xxx∗,xxx∗). We then marginalize the joint distribution,
Eq. (6), to derive the predictive distribution:

p(π∗|πππ) = N (π∗|m(xxx∗),σ2(xxx∗)) (8)

The predictive mean and variance functions depend on the
input xxx∗ through kkk,

m(xxx∗) = kkkTCCC−1πππ ,

σ2(xxx∗) = c− kkkTCCC−1kkk .
(9)

In this paper, to predict the wholesale price at hour h,
the input xxx∗h = [πh−D, ...,πh−1] is a vector of the immediate
D= 72 previous prices. The predictive output π∗

h corresponds
to the realized price πh. To train the GP model, 3 weeks of
DAM energy price data (N = 504) were used as the training
set πππ . The marginal likelihood Eq. (5) is maximized to learn
the hyperparameters length scales li, kernel variance σ2

f , and
likelihood noise precision β .

Because the DAM market schedules 24 hours at a time
(midnight to midnight), price forecasts for over 24 hours
need to be generated at once. Recall, however, the GP model
only forecasts the price at the next timestep. We propose
Algorithm 1 to generate a forecast with T timesteps.

Algorithm 1 Autoregressive GP Regression Price Forecast
1: for s = 0 to Ns −1 do
2: Initialize forecast scenario πππ∗

s = [ ]
3: Initialize predictive input xxx∗ =[π−D, ...,π−1]
4: for h = 0 to T −1 do
5: Use xxx∗ to compute the predictive distribution

p(π∗|πππ) via Eq. (8)
6: Sample π∗

h from p(π∗|πππ) with strategies from Sec-
tion III-A

7: Append π∗
h → πππ∗

s , delete xxx∗[0], append π∗
h → xxx∗

8: end for
9: end for
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B. Thermal Generator Portofolio

For demonstration, we consider a generation company
(GenCo) which has 6 generation units, i.e. Coal 1, CCGT
1. CCGT 2, Coal 2, Oil 1, and Oil 2. The characteristics
of the generators can be found in Table I [7]. A linear cost
function is considered for these units and a static bid curve
can be derived from this cost function.

C. Stochastic Programming for Self-schedule

With the model described above, we can formulate the
day-ahead self-schedule problem as the following stochastic
mixed-integer linear program (MILP).

max
1

||S || ∑
j∈G ,h∈T ,s∈S

(π∗
hsq jhs − c jq jhs − cF

j y jhs) (10)

s.t.

q jhs =
1
2
(p j(h−1)s + p jhs) ∀ j,h,s (11)

Pmin
j y jhs ≤ p jhs ≤ Pmax

j y jhs ∀ j,h,s (12)

p jhs ≤ p j(h−1)s +Rup
j y j(h−1)s+

RSU
j (y jhs − y j(h−1)s)+Pmax

j (1− y jhs) ∀ j,h,s (13)

p j(h−1)s − p jhs ≤ Rdw
j y jhs+

RSD
j (y j(h−1)s − y jhs)+Pmax

j (1− y j(h−1)s) ∀ j,h,s (14)

p jhs ≤ Pmax
j y j(h+1)s +RSD

j (y jhs − y j(h+1)s) ∀ j,h,s (15)
G j−1

∑
h=0

(1− y jhs) = 0 ∀ j,s (16)

h0+UTj−1

∑
h=h0

y jhs ≥UTj(y jh0s − y j(h0−1)s)

∀ j,s ∀h0 ∈ [G j, ...,T −UTj] (17)
T−1

∑
h=h0

[y jhs − (y jh0s − y j(h0−1)s)]≥ 0

∀ j,s ∀h0 ∈ [T −UTj +1, ...,T −1] (18)
L j−1

∑
h=0

y jhs = 0 ∀ j,s (19)

h0+DTj−1

∑
h=h0

(1− y jhs)≥ DTj(y j(h0−1)s − y jh0s)

∀ j,s ∀h0 ∈ [L j, ...,T −DTj] (20)
T−1

∑
h=h0

[1− y jhs − (y j(h0−1)s − y jh0s)]≥ 0

∀ j,s ∀h0 ∈ [T −DTj +1, ...,T −1] (21)

This model uses three 3 indices and sets: generation units
j ∈ G := {Coal 1, CCGT 1, CCGT 2, Coal 2, Oil 1, Oil
2}, hours h ∈ T := [0,1, ...,T −1] where T is the length of
the planning horizon, and scenarios s ∈S . Unless otherwise
noted, ∀ j implies ∀ j ∈ G , ∀s implies ∀s∈S , and ∀h implies
∀h∈T in Eqs. (10) - (21). Decision variables are the amount
of energy generated q jhs, the generation power output p jhs,

and the on/off binary indicator y jhs for each unit. Parameters
are given in Table I.

The GenCO seeks to maximize its expected net revenue
from all six units participating in the DAM. The first term
in Eq. (10) calculates the expected revenue using price
forecasts π∗

hs. Production and fixed costs are captured in the
second and third terms, respectively. The problem is subject
to the physics of the generators. Eq. (11) states that the
energy delivered during (h− 1,h] is the average power at
time h− 1 and h. Eq. (12) bounds on the power outputs.
Eq. (13)-(15) enforces ramp-up, ramp-down, start-up, and
shutdown ramp rate limits [18]. Moreover, the generators are
constrained by the minimum uptime over the whole planning
horizon [18]: if the initial margin to the minimum uptime
G j = (UTj −UT init

j )yinit
j is positive, Eq. (16) requires the

generators to be online in the initial G j hours, otherwise this
constraint is skipped; Eq. (17) constrains the generators to
satisfy the minimum uptime limit in the subsequent sets of
consecutive UTj hours; and Eq. (18) demands the generators
online until the end of the planning horizon if they are
started up in the last UTj −1 hours in the horizon. Similarly,
minimum downtime constraints Eq. (19) - (21) apply to the
entire planning horizon [18].

TABLE I
CHARACTERISTICS OF THE THERMAL UNITS [7]

Units Coal1 CCGT1 CCGT2 Coal2 Oil1 Oil2
Fixed Cost

cF
j ($/h) 126.0 1097.2 992.8 575.0 91.5 1800.0

Production
Cost

c j ($/MWh)
19.81 25.17 25.51 29.37 37.91 33.91

Maximum
Power

Pmax
j (MW)

140 380 390 500 50 300

Minimum
Power

Pmin
j (MW)

75 160 180 250 25 200

Ramp-up
Limit

Rup
j (MW/h)

65 220 210 250 25 100

Ramp-down
Limit

Rdw
j (MW/h)

65 220 210 250 25 100

Start-up
Ramp Limit
RSU

j (MW/h)
75 220 210 250 25 200

Shut-down
Ramp Limit
RSD

j (MW/h)
75 220 210 250 25 200

Minimum
Uptime
UTj (h)

2 1 2 4 1 3

Minimum
Downtime

DTj (h)
2 1 2 4 1 3

The non-anticipativity constraint, Eq. (22), enforces that
the stochastic program does not “see into the future”. In the
first stage, hour h ∈ [0,T ′ − 1], the power output in each
scenario is unanimous and independent of scenarios. But
in the second stage (h ∈ [T ′,T − 1]), the power outputs are
dependent of the scenarios. This models the GenCo’s ability
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to react in the second stage to realized uncertainty.

p jhs = p jhs′ , ∀ j ∈ G , s ∈S , s′ ∈S \s, h ∈ [0,T ′−1] (22)

Solving the stochastic program, Eqs. (10) - (22) gives the
optimal energy production q jhk∀h ∈ T and power output
p jhk∀h ∈ T schedule for the trading hours in the next day.
We record this schedule, and then compute the actual revnues
using the realized price [π0,πT ′−1] (historical data). The time
horizon is then advanced and as expected in the rolling
horizon framework, we update the initial uptime UT init

j and
the initial downtime DT init

j and then resolve Eqs. (10) - (22).

D. Stochastic Programming for Bidding

The day-ahead bidding problem is similar to the self-
schedule problem. Specifically, the bidding problem uses the
same objective, Eq. (10), and physical constraints, Eqs. (11)
- (21). The non-anticipativity constraint is replaced with a
constraint to ensure the bidding curve (e.g., Fig. 1) is mono-
tonically increasing, i.e. production increases with price:

(p jhs − p jhs′)(π∗
hs −π∗

hs′)≥ 0,
∀ j ∈ G , s ∈ S , s′ ∈ S \ s, h ∈ [0,T ′−1] (23)

After solving the stochastic program, the time-varying
bidding curves for each hour of a day can be derived. Each
point on the bidding curve corresponds to a price forecast
scenario in the stochastic program. Simulating bidding in a
rolling horizon is more nuanced than self-schedule. Using
the generated bid curves, we assume the GenCo is a price-
taker and solve a simple market clearing problem. Based
on the schedule from the cleared market, we solve another
optimization problem with the same physical constraints to
track the set points. Then, like self-schedule, we record
the settlement with the realized prices. Similarly, the initial
uptime UT init

j and the initial downtime DT init
j are updated in

the model and then we advance to the next day.

III. RESULTS

A. Price Forecasts & Sampling Methods

After training the GP price forecast model, we have the
predictive Gaussian distribution p(π∗|πππ) from Eq. (8) and the
predictive mean m(xxx∗) and variance functions σ2(xxx∗) from
Eq. (9). We then use Algorithm 1 to make probabilistic DAM
price forecasts with three sampling strategies:

1) Monte Carlo Sampling
We generate Monte Carlo (MC) samples directly from
the predictive distribution p(π∗|πππ). As shown in Fig. 2
(top), this sampling method provides scenarios that
closely follow the forecast mean. MC sampling cap-
tures the realized prices well with a root mean squared
error (RMSE) of $4.59/MWh and a typically narrow
forecast range from $30.25/MWh to $37.34/MWh.

2) Uniform Sampling
Alternatively, we may want to emphasize on the tail
of the Gaussian distribution, i.e., sample farther from
the mean m(xxx∗). To do this, we generate uniform sam-
ples from U (m(xxx∗)−3σ(xxx∗),m(xxx∗)+3σ(xxx∗)). Fig. 2

(middle) shows greater variability than the MC sam-
ples. As expected, uniform sampling gives estimates
with a large RMSE ($5.30/MWh) and an intermediate
forecast range from $26.48/MWh to $39.83/MWh.

3) Contour Sampling
To further emphasize the probability density tail,
we generate deterministic samples by computing
m(xxx∗)+aiσ(xxx∗) ∀i ∈ [1, ...,13] where ai are 13 evenly
spaced fixed values between [−3,3]. Fig. 2 (bottom)
shows that the Contour Sampling emphasizes extreme
forecasts the most, and has the highest RMSE of
$13.30/MWh and also largest range from $9.75/MWh
to $58.69/MWh.

Fig. 2. GP price forecasts comparison among different sampling strategies
on Jan. 24th, 2015. Top: Price forecast scenarios generated by Monte
Carlo Sampling and the scenarios concentrate around the average; Middle:
Price forecast scenarios generated by Uniform Sampling and the scenarios
fluctuate and deviate from the average; Bottom: Price forecast scenarios
generated by Contour Sampling, which capture overall increasing and
decreasing trends but greatly deviate from the forecast mean.

B. Market Participation under Uncertainty
We now compare combinations of the three sampling

strategies (MC, uniform, contour) and three stochastic market
participation modes (self-schedule, time-varying bid curve,
static bid curve). Fig. 2 shows price forecasts for Jan. 24,
2015 and Fig. 3 shows the power output profiles of each
market participation mode with the sampling strategy that
captures the greatest revenue (with realized prices). We
benchmark each approach against optimization with perfect
information (no uncertainty).

From 0 am - 3 am, the realized prices are stable,
which has a mean of $28.17/MWh with a small standard
deviation of $0.41/MWh. And the perfection information
model dispatches Coal 1, CCGT 1 and CCGT 2 at full
capacity (Fig. 3, lower right). But because the forecast mean
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Fig. 3. Power output comparison among different market participation
strategies on Jan. 24th, 2015. Upper Left: Power outputs of self-schedule
using Monte Caro sampling method and the power outputs depend on the
trend of the average forecasts; Upper Right: Power outputs of bidding curves
with Contour sampling which overcomes the dependencies on the average
of the forecasts; Lower Left: Power outputs of static bidding curves are
insensitive to price forecasts and instead capture the production costs of the
generators; Lower Right: Power output of perfect information model which
serves as the benchmark.

Fig. 4. Hourly revenue comparison among different market participation
strategies on Jan. 24th, 2015.

is below the realized price, for self-schedule, this causes only
the generator Coal 1, whose production cost is the lowest,
to be dispatched (Fig. 3, upper left). Both bidding curve
approaches are more robust to this forecasting error and have
smaller power output deviations from perfect information,
as market-clearing is performed using the realized price.
In Fig. 3 upper right, slight deviation from the perfect
information model at 0 am regarding Coal 2 is because of
the temporal ramp-down limit constraints, Eqs. (14) and (15),
from the previous day (not shown in the figure).

As for 4 am - 8 am, there is an increase in the realized
DAM energy price from $28.51/MWh to $32.00/MWh. The
perfect information model exploits this opportunity by dis-
patching Coal 2 and then ramp down at 8 am in anticipation
of future prices. The forecast averages of MC sampling
capture that the price is going up at 4 am. As such, the self-
schedule model begins increasing power for Coal 2 at 4 am
but not as high as the perfect information model due to the
ramp-up limit (Eq. (13)). Later, the self-schedule increases
production for Coal 2 even more than the perfect information
model because the forecasted mean price is above the real-
ized price. Neither bidding curve models change dispatch
from 4 - 8 am because of simplifications in our market

simulator (e.g., no start-up costs, no uplift payments) and
the temporal ramp-up limit constraint (Eq. (13)).

From 9 am - 3 pm, there is a decrease in the market
prices from 9 am to 1 pm from $29.42/MWh to $24.52/MWh
which resulted in instantaneous revenue losses. Accordingly,
the perfect information model turns off all units except Coal
1. For 2 - 3 pm, CCGT1 and CCGT 2 are dispatched in
anticipation of the later prices increase, even with temporary
negative revenues. With the self-schedule model, though the
forecast mean predicts that there is a decrease from 9 am to
12 pm, the drop is not big enough to shut down CCGT 1,
CCGT 2 and Coal 2 which resulted in the largest revenue
loss in the day (shown in Fig. 4). The time-varying bidding
curve model can lower the power output from 9 am to 12 pm.
But due to the market-clearing results and ramp-up limit, the
ramp-up of CCGT 2 and Coal 2 increases the power again
at 1 pm which is earlier than the perfect information model.
This premature ramp-up also leads to a decrease in revenue.
In contrast, because the realized prices at 9 am and 10 am are
higher than the production cost of the CCGT 1 and CCGT
2, in the static bidding curve model the units bid and were
scheduled for max power output. This delays shutting down
the 2 units and then a loss of revenue at 11 am.

Lastly, during 4 pm - 11 pm, the realized market price
starts to climb at 4 pm and reaches its peak at 6 pm at a
value of 44.46$/MWh. Consequently, the perfect information
model increases the total power by dispatching Coal 1, Coal
2, CCGT 1 and CCGT 2 at full capacity. Even Oil 1,
which has the highest production cost of 37.91$/MWh, is
dispatched. But because the MC sampling average overes-
timates the prices, all the units, including Oil 2 who has
the highest fixed cost of 1800$/hr and the second-highest
production cost of 33.91$/MWh, are dispatched at their full
capacity at 5 pm and 6 pm. In contrast, both bidding models
are conservative about dispatching Oil 1 and Oil 2. On the
one hand, for the time-varying bidding model, although Oil
2 bid at least minimum power between 4 pm and 8 pm, the
market dispatches only Oil 1 but not Oil 2. We suspect this is
because of our simplified market-clearing algorithm (e.g., no
uplift payments). On the other hand, the static bidding curve
model did not even utilize Oil 1. Though Oil 1 and Oil 2 put
in their bids from 4 pm to 8 pm, due to the full utilization
of the cheaper unit Coal 2 at 4 pm and temporal ramp limit
constraints, Oil 1 and Oil 2 are not dispatched. After 6 pm,
the revenues captured by all the models are similar.

Based on the detailed analysis of Fig. 3, we observe
several general trends. First, the self-schedule model is
most sensitive to price forecasting errors. Specifically, large
deviations between the average price forecast and true (real-
ized) price can cause significant deviations from the perfect
information schedule. For example, from 9 am - 3 pm, the
MC forecasts overestimate the prices which results in the
largest instantaneous revenue loss on this day as shown in
Fig. 4. In contrast, both static and time-varying bidding
are more robust to price uncertainties. As a benchmark,
the perfect information model gives $129,458 in revenue,
which follows static bidding $125,816 (97.19% of perfect
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information), time-varying bidding with contour sampling
$118,661 (91.66%), and self-schedule with Monte Carlo
sampling $108,384 (83.72%).

TABLE II
ANNUAL REVENUE OPPORTUNITIES COMPARISON

Uncertainty Bidding Curve Self-schedule
Perfect

Information $70,568,283 (100%)

Static
Bidding Curve $67,241,092 (95.29%) -

MC
Sampling $54,205,759 (76.81%) $59,889,350 (84.87%)

Uniform
Sampling $57,055,508 (80.85%) $58,962,994 (83.55%)

Contour
Sampling $66,933,688 (94.85%) $58,762,205 (83.27%)

Next, we compare eight forecasting and bidding strategies
by computing revenues over all of the calendar year 2015.
Table II summarized the results. The perfect information
model is used as a benchmark, recording $70.5M in annual
revenue. Because of weak temporal constraints and a linear
cost function in the generator models, the static bidding
curve model captures 95.29% of the available revenue. For
time-varying bidding, we find contour sampling captures the
most revenue (94.85%) and MC sampling captures the least
(76.81%). For self-schedule, we find the opposite trend: MC
sampling captures the largest revenue (84.87%) and contour
sampling captures the least (83.27%). Computational results
were obtained using Gurobi 8.1.1 and Pyomo on a 24-
core Linux-based server (2.50 GHz clock speed, 251 GB
of RAM). Simulating 343 days took 1.8 hours on average.

IV. CONCLUSIONS
Participation in the modern wholesale energy market pro-

vides generation companies (GenCos) and energy-intensive
industrial systems with great revenue opportunities. In this
paper, we propose an autoregressive Gaussian process regres-
sion forecasting model. As future work, we plan to bench-
mark our GP method against other forecasting techniques. In
this paper, we quantitatively compare the economic oppor-
tunities brought by self-schedule and bidding under energy
price uncertainty with 3 different sampling strategies: Monte
Carlo sampling, uniform sampling, and contour sampling.
We use a 6-unit GenCo who solely participates in the
day-ahead energy market as an illustrative example. We
find that self-schedule formulation is the most sensitive to
forecasting errors. Monte Carlo sampling has the lowest
root mean square forecasting error and is the best paired
with self-schedule. On the other hand, the bidding curve
mode is inherently robust to price uncertainty. Uniform and
contour sampling are preferred as they bias extreme (tail
probability) price scenarios. The time-varying bidding curves
are more flexible than the static bidding curves, but they
require sufficient scenarios that cover a wider price range.
Although these conclusions are straightforward with thermal
generators, energy storage systems offer new challenges from
stronger temporal constraints. As future work, we plan to
compare self-schedule and bidding curves for hybrid energy
systems, which combines thermal generators and energy

storage systems. We also plan to perform simulations with
the high-fidelity market simulator Prescient.
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