Krist V. Gernaey, Jakob K. Huusom and Rafiqul Gani (Eds.), 12th International Symposium on Process
Systems Engineering and 25th European Symposium on Computer Aided Process Engineering.
31 May - 4 June 2015, Copenhagen, Denmark. (©) 2015 Elsevier B.V. All rights reserved.

Degeneracy Hunter: An Algorithm for Determining
Irreducible Sets of Degenerate Constraints in Mathe-
matical Programs

Alexander W. Dowling? and Lorenz T. Biegler®

4Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
biegler@cmu.edu

Abstract

Degenerate constraints, i.e. constraints that violate the Linearly Independent Constraint Qualifica-
tion (LICQ), are prevalent in many process optimization problems. These result from poor model
formulations (typically human error) and overspecifications, zero flowrates and disappearing units,
and recycle loops. Because degenerate constraints lead to singular Karush-Kuhn-Tucker (KKT)
systems and significant challenges for numeric solvers, these constraints complicate the solution
procedure for nonlinear programs (NLPs, i.e. nonlinear optimization problems). Although most
modern NLP solvers implement counter-measures to detect and eliminate degeneracies, increased
computational effort and convergence failures may still result. Instead, the best approach is to
reformulate the original NLP model. Unfortunately, this is difficult for complex models with thou-
sands of equations. This work describes the Degeneracy Hunter, an algorithm that systematically
analyzes any iteration from a continuous mathematical program solver and determines irreducible
sets of degenerate constraints. This tool allows the expert modeler to focus on only a handful
of equations, instead of the thousands that make up a typical process optimization problem. The
algorithm has been prototyped in MATLAB and analyzes derivative information exported from
GAMS. Calculation of irreducible sets of degenerate equations is formulated as a mixed integer
linear program. The algorithm has been applied to a non-convex, highly nonlinear Air Separa-
tion Unit (ASU) design problem with 15,000+ variables and constraints, which identified three
sources of degenerate equations. Straightforward revisions of the model to remove these degen-
erate constraints resulted in a 16% decrease in average CPU time and less frequent termination
at infeasible points. Identification of these degeneracies would have been virtually impossible
without a systematic approach.

Keywords: degenerate constraints, linearly dependent constraints, nonlinear programming

1. Introduction and Motivating Examples

We consider two classes of degenerate constraints: local and global. Local (or point) degeneracies
occur only at specific values for variables in the mathematical program. For example, mass balance
equations, shown in (1), become degenerate when flowrates go to zero (F =L =V =0). The
Jacobian of the equations is shown in (2), with F and z fixed. At the zero flowrate point, pivoting
on the first two columns in (2b) shows that the Jacobian matrix is rank deficient.

In contrast, global degeneracies always lead to rank deficient Jacobians, regardless of the value
of the variables. These most commonly are a consequence of overspecifications. For example, if
Y.vi=1and y; = K;x; Vi are added to (1), the systems is always overspecified (2 + 2n variables

810 A.W. Dowling and L.T. Biegler

and 3 + 2n equations when F, z and K are specified) and the Jacobian is rank deficient.

F=V+L (1a)
Fzi=x;L+yV, Vie {Comps} (1b)
Y (i—y)=0 (1¢)
ic{Comps}
L V. oxi - Xn YL Yn
OverallMB / -1 -1 o - 0 0o .- 0
MB i=1 —xi —yi —-L -+ 0 -V - 0
A= : : oo : .o (22)
Y 0 0 1 ... 1 -1 - -1
-1 -1 0 - 0 0 - 0
—x1 =y 0 -~~~ 0 0 - 0
AF=L=V=0)= T (2b)
Xy =y 0 - 0 0 o 0
0 o 1 -~ 1 -1 -+ -1

As another example, consider the system shown in Figure 1, comprising two vessels, a splitter and
seven streams. Stream 1 is fed into the first vessel, which has two outlets: streams 2 and 3. Without
loss of generality, let streams 2 and 3 represent two different phases in equilibrium. These streams
are fed into the second vessel, producing effluent streams 4 and 5. Stream 5 is split into streams
6 and 7, and the latter is recycled into the first vessel. Pressure relationships for these streams are
shown in (3). The equations are derived from a two simple rules: streams leaving a vessel are in
pressure equilibrium, and pressure cannot increase across vessels and is constant across a splitter.
This constraint system is overspecified (and degenerate), as there are seven constraints and seven
variables, but there should be one degree of freedom (e.g. P; should be free).

P=p (3a)
Py = Ps (3b)
Ps=P (3c)
Ps=P (3d)
P> P (3e)
P, > Ps (3
P> P (€19)

Many nonlinear programming (NLP) solvers implement safeguards to mitigate degenerate con-
straints. For example, CONOPT (Drud, 1994), a large-scale active-set generalized reduced gra-
dient (GRG) optimization solver, removes degenerate constraints from the active set, effectively
ignoring these constraints. However, determining the active set for inequality (and degenerate
constraints) is an NP-hard task. On the other hand, interior point methods avoid the computational
complexity of active set determination by penalizing inequality constraints with a barrier term. As
a consequence, degenerate constraints cannot easily be removed from the active set. In IPOPT
(Wichter and Biegler, 2006), a large-scale interior point method, degenerate constraints are in-
stead dealt with using regularization techniques (Wang et al., 2013; Chiang and Zavala, 2014).
However, neither of these strategies are fully effective, as shown in the case study (Section 3).

Degeneracy Hunter 811

With global degeneracies, the best option is model reformulation. For example, consider the
system in Figure 1. Either the recycle pressure constraint, (3g), should be removed and all of the
inequality constraints converted to equality constraints, or a pump should be added to the recycle
loop. Identifying the cause of degenerate constraints such as these, however, is difficult in large
problems with thousands of constraints.

2 /-_4> Jacobian & |)
o Model & Itinli
! multipliers
initial = GAMS —————>| Degeneracy

Irreducible

3 5 16 i Hunter
point set(s) of
e 7 degenerate
Model

equations
Expert Modeler q

Y

refinements
Figure 1: Pressure recycle degen-

eracy example .)
Figure 2: Recommend workflow with Degeneracy Hunter

Although factorization of the active Jacobian is sufficient for the identification of individual de-
generate equations, it is still difficult to debug large models. Furthermore, blindly removing de-
generate equation permanently from a model may be dangerous. For example, this could violate
mass conservation when applied to (1). Instead Degeneracy Hunter aims to help expert modelers
uncover the cause of degeneracies by finding the smallest sets of degenerate equations, i.e. irre-
ducible degenerate sets. This allows the modeler to focus on a handful of equations instead of
thousands (in large problems). Thus, the algorithms in Degeneracy Hunter are intended for post
optimization analysis and not realtime use embedded in a NLP solver. The envisioned workflow
with Degeneracy Hunter is shown in Figure 2.

2. The Degeneracy Hunger Algorithm

The Degeneracy Hunter algorithm is divided into four steps, and is summarized in Algorithm
1. First, in the processing step, the Jacobian and KKT (Karush-Kuhn-Tucker) multipliers are
extracted from GAMS (or a similar environment), and the constraints are classified into four cat-
egories: equality, inactive inequality, strongly active inequality (non-zero multipliers) and weakly
active inequality (zero multipliers). The active Jacobian (Agy) is then assembled. It contains only
the equality, strongly active inequality and optionally weakly active inequality constraints.

Next, in the factorization step, non-pivot rows of the active Jacobian are identified using either
sparse or dense QR factorization. These rows are candidate degenerate equations. If the active
Jacobian is not degenerate, there are no candidates and the algorithm terminates in this step.

In the analysis step, irreducible degenerate sets are calculated by solving a sequence of mixed in-
teger linear programs (MILP), shown in (4), in order to minimize the number of non-zero elements
in the adjoint vector A. Integer variables y are used to count the number of non-zero elements. In
order to avoid the trivial solution, ||A|| = 0, the problem is resolved repeatedly with A; = 1 where
Jj=1,...n.nq are the indices of the n.,; candidate degenerate equations. Thus, this procedure
may identify several irreducible degenerate sets instead of simply the smallest set. This is desir-
able, as there may be several independent sources of degeneracies in a large problem. Furthermore,
because (4) is an MILP, its solution has the lowest possible cardinality. Through careful integra-
tion with mixed integer programming solvers, it would be possible to recover several irreducible
degenerate sets containing candidate j with equal cardinality. Alternatively, it is also common
for (4) to be infeasible. This indicates that candidate equation j does not significantly contribute
to any degenerate set. Its original identification may have resulted from numerical noise in the
factorization step. In the current implementation, the MILP is solved in GAMS with CPLEX or a

812 A.W. Dowling and L.T. Biegler

similar solver. For the test problems, including the case study with 15,000+ variables, the MILPs
solve in (typically far) less than 1 CPU minute each. This is due both to the efficiency of com-
mercial MILP solvers and the sparsity of the Jacobian for many chemical engineering problems.

Nrows

min)y (4a)
i=1

st. ALA=0 (4b)
_MyigliSMYIﬂ Vi= L, yows (4c)
Ai=1 (4d)

Finally, in the display step, each irreducible degenerate set is reported (with the equation names
from GAMS) along with the adjoint vector elements, A, for these equations. This information
allows the modeler to understand how a small number of equations interact to form degeneracies.

Data: Jacobian A, KKT multipliers m, constraint values ¢
Step 1: Assemble active Jacobian A, using A, m, ¢ and user specified options ;
Step 2: Factorize A4, and identify set of candidate degenerate equations {S} ;
foreach j € {S} do
Step 3: Solve (4) ;
if (4) is feasible then
\ Step 4: Display non-zero elements of A (i.e. y; = 1) and associated equation names ;
else
| Step 4: Display equation j’s name and “is not part of a degenerate set”
end
end
Algorithm 1: Pseudo-code for Degeneracy Hunter

3. Case Study: Air Separation Unit Design and Optimization

The authors previously developed an equation-based framework for flowsheet optimization in
GAMS, and applied it to design air separation units for oxy-fired advanced power systems (Dowl-
ing and Biegler, 2015). The framework includes four key features: [1] embedded cubic equation
of state thermodynamic calculations with vanishing and reappearing phases; [2] a novel equilib-
rium based distillation model with tray bypasses instead of integer variables; [3] simultaneous heat
integration and process optimization; and [4] a trust region optimization algorithm to incorporate
complex reactor models (e.g. computational fluid dynamics) without exact derivatives. Comple-
mentarity constraints are used throughout the framework to model switches, such as (dis)appearing
phases and equipment being (in)active. The framework also includes a sophisticated initialization
and multi-start procedure. In summary, a sequence of NLPs is solved in the framework. First the
flowsheet is optimized with ideal thermodynamics and shortcut distillation models. These results
are used to initialize more complex models, including cubic equation of state thermodynamics and
the MESH with bypass distillation model. Applied to the ASU design problems, this ultimately
yields a nonlinear program 15,000+ variables and constraints and ~500 degrees of freedom.

Degeneracy Hunter has been applied to this model, and identified three sources of degenerate
equations, which are a consequence of modeler (human) error.
3.1. Overspecifications

In the final stage of the optimization workflow for the equation-based framework, each half side
of a heat exchange unit (condensers, reboilers, heat exchangers) is decomposed into a specified
number of subunits. This is done to refine the constant heat capacity assumption used in the heat

Degeneracy Hunter 813

integration model; with subunits, the heat capacity is now represented by a piecewise linear func-
tion. The subunits are spaced with equal temperature changes. For example, if a heat exchanger
changes the temperature of a stream by 25 K, and it is decomposed into 5 subunits in series, each
subunit would have a temperature difference of 5 K.

Unfortunately in this subunit model, there were two instances of overspecification. For the tem-
perature differences, the following equations were originally used:

T — T°" = AT, VYu € {Heat Exchange Units} (5a)
T — T = AT /n, Vs(u) € {Heat Exchange Subunits} () (5b)

where 7 is the number of subunits (specified constant). Clearly, (5a) can be identified as degenerate
and removed. (5b) is sufficient on its own to enforce the equal temperature spacing.

The second source of degenerate equations (overspecifications) comes from inequality constraints.
Each subunit is defined by either heating or cooling, and the sign of the heat duty for each unit
is restricted accordingly, as shown in (6a) & (6b). Furthermore, to assist with optimization inlet
and outlet temperatures are also constrained (e.g. temperature may not decrease in a heating unit),
as shown in (6¢) & (6d). These additional equations are also redundant. When Q > 0, the extra
equations are inactive, and when Q = 0, the equations create a local degeneracy.

Q'nj, >0, 09 =0, Vh € {Heating Subunits} (6a)
Q'n. =0, Q% >0, Yc €& {Cooling Subunits} (6b)
T/" < T, Vh € {Heating Subunits} (6¢)
T > T2 Ve € {Cooling Subunits} (6d)

Finally, there is also a third source of degenerate equations with a pressure recycle between the
distillation cascades and reboiler, similar to Figure 1.

All three of these sources of degeneracy were identified using Degeneracy Hunter. Although these
modeling mistakes seem trivial, they easily go undetected within an equation-based framework
that has several modules spread over more than ten thousand of lines of GAMS code. Without
a systematical debugging tool, it is difficult to diagnose poor optimizer performances as either
inadequate initialization or the presence of degenerate equations.

3.2. Computational Results

The ASU design optimization problem from our previous study was solved for the same 288 initial
points, with several different configurations for the degenerate equations (Dowling and Biegler,
2015). For all of these computational studies, a desktop computer, running Ubuntu Linux and
GAMS 24.3.1 with a quad-core 2.8 GHz Intel i7 processor, was used. In order to quantify vari-
ations in timings due to background jobs, GAMS overhead, disk access, etc., several of the trials
were repeated. The timings are consistent within a few seconds. The average CPU time for all
288 instances of the optimization problem are reported in Table 1 for each trial. These CPU times
include the entire initialization procedure described by Dowling and Biegler (2015).

The best performance was obtained with all three sources of degeneracy removed (753.9 s) and the
worst performance occurred with all three sources of degeneracies remaining in the optimization
formulation (896.4 s). Thus with this case study, removing the degenerate equations decreased
CPU time by 16%. Furthermore, the presence of degenerate constraints also impacted the ter-
mination status with CONOPT. The last two columns of Table 1 show the number optimal and
only feasible solution points, as classified by CONOPT, for each trial. “High quality” solutions

814 A.W. Dowling and L.T. Biegler

Table 1: Comparison of CPU times for the ASU design optimization problem with various degen-
erate constraints removed.

Trial Pressure recycle (5a) (6c) & (6d) Average “High Quality”
removed? removed? removed? CPUtime Optimal Only Feasible
1 No No No 896.4 s 210 14
No Yes Yes 863.6 s 204 17
3a Yes No No 791.2s 215 20
3b Yes No No 788.7 s 215 20
da Yes Yes No 817.5s 205 13
4b Yes Yes No 818.4 s 205 13
Sa Yes No Yes 858.0s 204 23
5b Yes No Yes 859.8 s 204 23
6a Yes Yes Yes 7533 s 214 18
6b Yes Yes Yes 754.1s 214 18
6¢ Yes Yes Yes 754.4 s 214 18

are defined as completely heat integrated with no complementarity violations. CONOPT termi-
nated at locally optimal points 214 times in trial six (all degeneracies removed). In contrast, with
some degeneracies present in trial five, CONOPT terminated at locally optimal only 204 times.
This performance difference is expected, as the KKT multipliers are not unique in the presence
of degeneracies. For the feasible only points, the active-set strategy may have not removed all
of the degenerate constraints. Furthermore, in trial four (218), CONOPT terminated at 17 more
infeasible and/or not high quality points than trial three (235). This speaks to the complexity of
NLP solution techniques and the initialization procedure used in the framework. It is likely the
presence of degeneracies (especially the pressure recycle loop) causes the NLP solver, CONOPT,
to take different convergence paths early in the initialization procedure. This can result in very
different solutions for each initial point considered.

4. Conclusions

In summary, we develop and describe the Degeneracy Hunter, an algorithm for determining irre-
ducible degenerate sets of equations. Calculation of these sets is formulated as a mixed integer
linear program. This contribution is especially important for debugging complex nonlinear pro-
grams with thousands of constraints. As demonstrated in a process design case study, the presence
of a few degenerate equations may have a dramatic impact on solution time with active set meth-
ods, such as CONOPT. With interior point methods, such as IPOPT, degenerate equations can be
even more serious, and could cause the solver to terminate at infeasible points. Degeneracy Hunter
is a model debugging tool that helps expert modelers to identify degenerate constraints, reformu-
late their problems, and improve the performance of the large-scale optimization strategy. We
recommend using Degeneracy Hunter to diagnose poor performance in NLP solvers, especially
due to cycling and termination at non-optimal feasible points as a result of small step sizes.

References

Chiang, N., Zavala, V. M., 2014. An inertia-free filter line-search algorithm for large-scale nonlinear programming,
preprint ANL/MCS-P5197-0914. URL http://www.mcs.anl.gov/papers/P5197-0914.pdf

Dowling, A. W., Biegler, L. T., 2015. A framework for efficient large scale equation-oriented flowsheet optimization.
Computers & Chemical Engineering 72, 3 — 20.

Drud, A. S., 1994. CONOPT - A large-scale GRG code. ORSA Journal on Computing 6 (2), 207-216.

Wiichter, A., Biegler, L. T., 2006. On the implementation of an interior-point filter line-search algorithm for large-scale
nonlinear programming. Mathematical programming 106 (1), 25-57.

Wang, K., Shao, Z., Lang, Y., Qian, J., Biegler, L. T., 2013. Barrier nlp methods with structured regularization for

optimization of degenerate optimization problems. Computers & Chemical Engineering 57, 24-29.

Ths paper was il or esponsibily for

msored by an sgen

